Calculation of the initial elevation of the water surface at the tsunami source in the basin with arbitrary bottom topography
Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 75-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the potential theory of an incompressible fluid, under the instantaneous sea-bottom deformation assumption, a two-dimensional ($0xz$) numerical model is developed, which makes it possible to calculate the initial elevation of the water surface in the tsunami source in a basin of variable depth. Through the use of the $\sigma$-coordinate, the model makes it possible to take into account the contribution of the horizontal component of the bottom deformation and the “smoothing effect” of the water layer. To test the numerical model, we obtained an analytical solution to the problem of the initial elevation in a basin with a flat sloping bottom with bottom deformation of a triangular shape. The results of the test show that for a spatial step typical for numerical tsunami models, there is a good agreement between the numerical and analytical solutions. Using the developed $\sigma$-model, we calculated the initial elevations of the water surface during the Kuril earthquake on January 13, 2007 and the Great East Japan Tohoku earthquake on March 11, 2011 (along selected 2D sections). The results obtained are used to test an approximate method for calculating the initial elevation, known as the Kajiura filter, in which the ocean depth is assumed to be constant throughout the entire tsunami source area.
Mots-clés : tsunami, incompressible fluid
Keywords: initial elevation, potential theory, Kajiura filter, sigma coordinate.
@article{MM_2023_35_2_a5,
     author = {K. A. Sementsov and M. A. Nosov},
     title = {Calculation of the initial elevation of the water surface at the tsunami source in the basin with arbitrary bottom topography},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--94},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_2_a5/}
}
TY  - JOUR
AU  - K. A. Sementsov
AU  - M. A. Nosov
TI  - Calculation of the initial elevation of the water surface at the tsunami source in the basin with arbitrary bottom topography
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 75
EP  - 94
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_2_a5/
LA  - ru
ID  - MM_2023_35_2_a5
ER  - 
%0 Journal Article
%A K. A. Sementsov
%A M. A. Nosov
%T Calculation of the initial elevation of the water surface at the tsunami source in the basin with arbitrary bottom topography
%J Matematičeskoe modelirovanie
%D 2023
%P 75-94
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_2_a5/
%G ru
%F MM_2023_35_2_a5
K. A. Sementsov; M. A. Nosov. Calculation of the initial elevation of the water surface at the tsunami source in the basin with arbitrary bottom topography. Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 75-94. http://geodesic.mathdoc.fr/item/MM_2023_35_2_a5/

[1] M.A. Nosov, “Tsunami waves of seismic origin: The modern state of knowledge”, Izvestiya Atmospheric and Oceanic Physics, 50:5 (2014), 474–484 | DOI

[2] A. R. Gusman, I. E. Mulia, K. Satake, S. Watada, M. Heidarzadeh, A. F. Sheehan, “Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake”, Geophys. Res. Lett., 43 (2016), 9819–9828 | DOI

[3] G. C. Lotto, G. Nava, E. M. Dunham, Should tsunami simulations include a nonzero initial horizontal velocity?, Earth, Planets and Space, 69:1 (2017), 1–14 | DOI

[4] T. Maeda, T. Furumura, “FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion”, Pure and Applied Geophysics, 170:1 (2013), 109–127 | DOI

[5] J. E. Kozdon, E. M. Dunham, “Constraining shallow slip and tsunami excitation in mega-thrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks”, Earth and Planetary Science Letters, 396 (2014), 56–65 | DOI

[6] G. C. Lotto, T. N. Jeppson, E. M. Dunham, “Fully Coupled Simulations of Megathrust Earth-quakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone”, Pure Appl. Geophys., 176 (2019), 4009–4041 | DOI

[7] S. Popinet, “Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami”, Natural Hazards Earth System Sci., 12:4 (2012), 1213–1227 | DOI

[8] S. Iwasaki, “Experimental Study of a Tsunami Generated by a Horizontal Motion of a Sloping Bottom”, Bulletin of the Earthquake Research Institute, 57 (1982), 239–262

[9] Y. Tanioka, K. Satake, “Tsunami generation by horizontal displacement of ocean bottom”, Geophysical research letters, 23:8 (1996), 861–864 | DOI

[10] M. A. Nosov, A. V. Bolshakova, S. V. Kolesov, “Displaced water volume, potential energy of initial elevation, and tsunami intensity: Analysis of recent tsunami events”, Pure and Applied Geophysics, 171:12 (2014), 3515–3525 | DOI

[11] A. V. Bolshakova, M. A. Nosov, S. V. Kolesov, “The properties of co-seismic deformations of the ocean bottom as indicated by the slip-distribution data in tsunamigenic earthquake sources”, Moscow University Physics Bulletin, 70:1 (2015), 62–67 | DOI

[12] M. A. Nosov, A. V. Bolshakova, K. A. Sementsov, “Energy characteristics of tsunami sources and the mechanism of wave generation by seismic movements of the ocean floor”, Moscow University Physics Bulletin, 76, Suppl. 1 (2021), S136–S142 | DOI

[13] R. Takahashi, “On seismic sea waves caused by deformations of the sea bottom”, Bull. Earthq. Res. Inst., 20 (1942), 357–400 | MR

[14] K. Kajiura, “The leading wave of a tsunami”, Bull. Earthq. Res. Inst., 41 (1963), 535–571

[15] M. A. Nosov, S. V. Kolesov, “Optimal Initial Conditions for Simulation of Seismotectonic Tsunamis”, Pure Appl. Geophys., 168:6–7 (2011), 1223–1237 | DOI

[16] M. A. Nosov, K. A. Sementsov, “Calculation of the initial elevation at the tsunami source using analytical solutions”, Izvest. Atmospheric and Oceanic Physics, 50:5 (2014), 539–546 | DOI

[17] M. A. Nosov, Vvedenie v teoriiu tsunami, Ianus-K, M., 2019, 170 pp.

[18] K. Aki, P.G. Richards, Quantitative Seismology, 2nd Edition, Univ. Sci. Books, Sausalito, CA, 2002, 700 pp.

[19] C. Ji, D. J. Wald, D. V. Helmberger, “Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis”, Bulletin of the Seismological Society of America, 92:4 (2002), 1192–1207 | DOI

[20] S. E. Minson, J. R. Murray, J. O. Langbein, J. S. Gomberg, “Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data”, Journal of Geophysical Research: Solid Earth, 119 (2014), 3201–3231 | DOI

[21] S. Kawamoto, Y. Ohta, Y. Hiyama, M. Todoriki, T. Nishimura, T. Furuya, Y. Sato, T. Yahagi, K. Miyagawa, “REGARD: A new GNSS-based real-time finite fault modeling system for GEONET”, Journal of Geophysical Research: Solid Earth, 122 (2017), 1324–1349 | DOI

[22] S. Watada, S. Kusumoto, K. Satake, “Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth”, Journal of Geophysical Research: Solid Earth, 119 (2014), 4287–4310 | DOI

[23] T. C. Ho, K. Satake, S. Watada, “Improved phase corrections for transoceanic tsunami data in spatial and temporal source estimation: Application to the 2011 Tohoku earthquake”, Journal of Geophysical Research: Solid Earth, 122 (2017), 10155–10175 | DOI

[24] J. L. Hammack, “A note on tsunamis: their generation and propagation in an ocean of uniform depth”, Journal of Fluid Mechanics, 60:4 (1973), 769–799 | DOI

[25] S. N. Ward, “Tsunamis”, The Encyclopedia of Physical Science and Technology, v. 17, ed. Meyers R.A., Academic Press, 2001, 175–191

[26] Y. Kervella, D. Dutykh, F. Dias, “Comparison between three-dimensional linear and nonlinear tsunami generation models”, Theoretical and computational fluid dynamics, 21:4 (2007), 245–269 | DOI

[27] T. Saito, T. Furumura, “Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory”, Geophysical Journal International, 178:2 (2009), 877–888 | DOI

[28] Y. Tanioka, T. Seno, “Sediment effect on tsunami generation of the 1896 Sanriku tsunami earthquake”, Geophys. Res. Lett., 28 (2001), 3389–3392 | DOI

[29] H. Tsushima, R. Hino, Y. Tanioka, F. Imamura, H. Fujimoto, “Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting”, J. Geophys. Res., 117 (2012), B03311 | DOI

[30] T. Baba, Y. Gon, K. Imai, K. Yamashita, T. Matsuno, M. Hayashi, H. Ichihara, “Modeling of a dispersive tsunami caused by a submarine landslide based on detailed bathymetry of the continental slope in the Nankai trough, southwest Japan”, Tectonophysics, 768 (2019), 228182 | DOI

[31] T. Saito, “Tsunami generation: validity and limitations of conventional theories”, Geophysical Journal International, 210:3 (2017), 1888–1900 | DOI

[32] T. Baba, S. Allgeyer, J. Hossen, P. R. Cummins, H. Tsushima, K. Imai, K. Yamashita, T. Kato, “Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change”, Ocean Modelling, 111 (2017), 46–54 | DOI

[33] I.V. Fine, E.A. Kulikov, “Calculation of sea surface displacements in a tsunami source area caused by instantaneous vertical deformation of the seabed due to an underwater earth-quake”, Vychisl. Tekhnol., 16:2 (2011), 111–118

[34] T. Saito, “Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory”, Earth, Planets Space, 65:12 (2013), 1411–1423 | DOI

[35] E. A. Kulikov, V. K. Gusiakov, A. A. Ivanova, B. V. Baranov, “Numerical tsunami modelling and the bottom relief”, Moscow University Physics Bulletin, 71:6 (2016), 527 | DOI

[36] E. A. Kulikov, A. Iu. Medvedeva, I. V. Fain, “Otsenka opasnosti tsunami v Kaspiiskom more”, Okeanologicheskie issledovaniia, 47:5 (2019), 74–88

[37] T. Saito, Tsunami generation and propagation, Springer Japan, Tokyo, 2019, 265 pp.

[38] M. A. Nosov, S. V. Kolesov, “Method of specification of the initial conditions for numerical tsunami modeling”, Moscow University Physics Bulletin, 64:2 (2009), 208 | DOI

[39] O. M. Phillips, “On the generation of waves by turbulent wind”, Journal of fluid mechanics, 2:5 (1957), 417–445 | DOI | MR

[40] Y. Y. Li, B. Wang, D.-H. Wang, “Characteristics of a terrain-following sigma coordinate”, Atmospheric and Oceanic Science Letters, 4:3 (2011), 157–161 | DOI

[41] S. M. Griffies et al, “Developments in ocean climate modelling”, Ocean Modelling, 2:3–4 (2000), 123–192 | DOI

[42] A. V. Gusev, Chislennaia model gidrodinamiki okeana d krivolineinykh koordinatakh dlia vosproizvedeniia tsirkuliatsii mirovogo okeana i ego otdelnykh akvtorii, dissert. kand. fiz.-mat. nauk, Inst. vychislit. matematiki, M., 2009

[43] N. A. Dianskii, Modelirovanie tsirkuliatsii okeana I issledovanie ego reakstii na korotkoperiodnye i dolgoperiodnye atmosfernye vozdeistviia, Fizmatlit, M., 2013, 272 pp.

[44] M. A. Nosov, S. V. Kolesov, “Combined Numerical Model of a Tsunami”, Mathematical Models and Computer Simulations, 11:5 (2019), 679–689 | DOI | MR

[45] K. A. Sementsov, M. A. Nosov, S. V. Kolesov, V. A. Karpov, H. Matsumoto, Y. Kaneda, “Free gravity waves in the ocean excited by seismic surface waves: Observations and numerical simulations”, Journal of Geophysical Research: Oceans, 124:11 (2019), 8468–8484 | DOI | MR

[46] R. L. Haney, “On the pressure gradient force over steep topography in sigma coordinate ocean models”, Journal of physical Oceanography, 21:4 (1991), 610–619 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[47] A. Beckmann, D. B. Haidvogel, “Numerical simulation of flow around a tall isolated sea-mount. Part I: Problem formulation and model accuracy”, Journal of physical oceanography, 23:8 (1993), 1736–1753 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[48] K. A. Sementsov, A. V. Bolshakova, “A Model for the Generation of Waves in the Ocean by Seismic Bottom Movements in Sigma-Coordinates”, Moscow University Physics Bulletin, 75:1 (2020), 87–94 | DOI

[49] A. A. Samarskii, Vvedenie v teoriiu raznostnyh skhem, Nauka, M., 1971, 553 pp.

[50] K. A. Sementsov, Dinamicheskaia i staticheskaia modeli generatsii poverkhnostnykh voln v okeane zemletriaseniiami, diss. kand. fiz.-mat. nauk, MGU im. M.V. Lomonosova, M., 2017

[51] Y. Okada, “Surface deformation due to shear and tensile faults in a half-space”, Bulletin of the seismological society of America, 75:4 (1985), 1135–1154 | DOI

[52] B. W. Levin, M. A. Nosov, Physics of Tsunamis, Second Edition, Springer International Publishing AG, Switzerland, 2016, 388 pp.