Convergence of some iterative algorithms for numerical solution of two-dimensional non-stationary problems of magnetic hydrodynamics
Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 57-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work studies the convergence of methods of combined and separate solution of difference equations groups, divided by physical processes, applied to a family of completely conservative difference schemes (CCDS) of two-dimensional magnetohydrodynamics (MHD). Estimates are obtained for the convergence of iterative processes for the entire family of CCDS both for the method of separate and combined solution of groups of difference equations. These results are obtained for the first time; previously, such estimates were obtained only for a purely implicit difference scheme. The validity of the estimates obtained in the work is confirmed by numerical calculations. Based on the estimates obtained in this work, recommendations were developed for any CCDS, which numerical method is more appropriate to use to solve the system of difference equations. Depending on the ratio of the parameters of the substance and the electromagnetic field at each moment of time, the estimates obtained in this work, even for calculating one physical problem of two-dimensional MHD, make it possible to choose the optimal numerical method for each time integration step, which leads to a significant reduction in the computational time of the problem. This can be quite important, especially when conducting a large-scale computational experiment. Thus, the results obtained in this work have not only interesting theoretical, but also important practical significance.
Keywords: two-dimensional magnetohydrodynamics, family of completely conservative difference schemes, convergence of iterative process.
@article{MM_2023_35_2_a4,
     author = {A. Yu. Krukovskiy and Yu. A. Poveshchenko and V. O. Podryga},
     title = {Convergence of some iterative algorithms for numerical solution of two-dimensional non-stationary problems of magnetic hydrodynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--74},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_2_a4/}
}
TY  - JOUR
AU  - A. Yu. Krukovskiy
AU  - Yu. A. Poveshchenko
AU  - V. O. Podryga
TI  - Convergence of some iterative algorithms for numerical solution of two-dimensional non-stationary problems of magnetic hydrodynamics
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 57
EP  - 74
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_2_a4/
LA  - ru
ID  - MM_2023_35_2_a4
ER  - 
%0 Journal Article
%A A. Yu. Krukovskiy
%A Yu. A. Poveshchenko
%A V. O. Podryga
%T Convergence of some iterative algorithms for numerical solution of two-dimensional non-stationary problems of magnetic hydrodynamics
%J Matematičeskoe modelirovanie
%D 2023
%P 57-74
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_2_a4/
%G ru
%F MM_2023_35_2_a4
A. Yu. Krukovskiy; Yu. A. Poveshchenko; V. O. Podryga. Convergence of some iterative algorithms for numerical solution of two-dimensional non-stationary problems of magnetic hydrodynamics. Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 57-74. http://geodesic.mathdoc.fr/item/MM_2023_35_2_a4/

[1] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniia zadach gazovoi dinamiki, Nauka, M., 1992, 424 pp. | MR

[2] A. Yu. Krukovskiy, V. A. Gasilov, Yu. A. Poveshchenko, Yu. S. Sharova, L. V. Klochkova, “Implementing a fully conservative Lagrangian-Euler scheme for two-dimensional problems of magnetic gas dynamics”, Math. Models Comp. Simul., 12:5 (2020), 706–718 | DOI | MR

[3] V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskiy, T. P. Novikova, Matematicheskaia model i metod rascheta implozii elektrodinamicheski uskoriaemoi plazmy, preprint No 29, FIAN im. P.N. Lebedeva, 1995, 20 pp.

[4] J. J. Duderstadt, G. A. Moses, Inertial confinement fusion, John Wiley Sons, NY, 1982, 347 pp.

[5] S. V. Zakharov, V. P. Smirnov, E. V. Grabovskii, S. L. Nedoseev, G. M. Oleinik, V. I. Zaitsev, “Imploding liner as driver for indirect driven target physics studies”, Proc. of the IAEA Technical Committee Meeting on Drivers for Inertial Confinement Fusion (Paris, 1994), International Atomic Energy Agency, Vienna, 1995, 395

[6] V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskiy, T. P. Novikova, V. B. Rozanov, Chislennoe modelirovanie protsessov nelineinoi teploprovodnosti i radiatsionnoi gazovoi dinamiki pri implozii veshchestva vo vnutrennikh polostiakh mishenei LTS, preprint No 30, FIAN im. P.N. Lebedeva, 1999, 19 pp.

[7] A. V. Branitskiy, E. V. Grabovskiy, S. V. Zakharov, M. V. Zurin, A. Yu. Krukovskiy, G. M. Oleinik, V. P. Smirnov, I. N. Frolov, “Penetration of an azimuthal magnetic flux during the implosion of a double liner”, Plasma Physics Reports, 25:12 (1999), 994–999

[8] V. A. Gasilov, A. S. Chuvatin, A. Yu. Krukovskiy, E. A. Kartasheva, O. G. Ol'hovskaya, A. S. Boldarev, D. S. Tarasov, N. V. Serova, S. V. D'yachenko, O. V. Fryazinov, “Kompleks programm RAZRIAD: modelirovanie uskoreniia plazmy v silnotochnykh impulsnykh sistemakh”, Matematicheskoe modelirovanie, 15:9 (2003), 107–124

[9] V. A. Gasilov, A. Yu. Krukovskiy, V. G. Novikov, I. V. Romanov, I. P. Tsygvintsev, “Chislennoe modelirovanie tokoprokhozhdeniia v vakuumnom diode s lazernym podzhigom”, Keldysh Institute preprints, 2013, 078, 20 pp.

[10] A. G. Kulikovskii, V. A. Lyubimov, Magnitnaia gidrodinamika, Logos, M., 2005, 328 pp.

[11] A. A. Samarskii, P. P. Volosevich, M. I. Volchinskaya, S. P. Kurdyumov, “A finite-difference method for the solution of one-dimensional non-stationary problems in magneto-hydrodynamics”, Computational Mathematics Mathematical Phys., 8:5 (1968), 117–134 | DOI

[12] R. P. Fedorenko, Vvedenie v vychislitelnuiu fiziku, Izd-vo MFTI, M., 1994, 528 pp.

[13] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 432 pp.

[14] A. Yu. Krukovskiy, Yu. A. Poveshchenko, V. O. Podryga, D. S. Boykov, “Otsenki skhodimosti nekotorykh iteratsionnykh algoritmov chislennogo modelirovaniia dvumernykh uravnenii magnitnoi gidrodinamiki”, Keldysh Institute preprints, 2022, 013, 16 pp.

[15] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-statistical models of hot dense matter. Methods for computation opacity and equation of state, Birkhauser, Switzerland, 2005, 447 pp. | MR