Technique for determining the types of fault in calculations of gas flows
Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 43-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a technique for determining the types of discontinuities in the numerical solution of various problems of gas dynamics. The relevance of the topic is determined by the fact that in complex gas-dynamic formulations, a correct definition of the areas occupied by rarefaction waves, contact discontinuities and shock waves is required. The choice of one or another scheme for the numerical solution of the problem depends on the correct definition of such regions. In this paper, we present a technique that makes it possible to determine in a unified way the boundaries of regions containing discontinuities and waves of various types. To do this, in terms of the required gas-dynamic functions, inequalities are derived that single out such regions. This information is used when modifying known or constructing new difference schemes in order to increase their stability and/or monotonicity. For example, the resulting inequalities allow one to single out numerical schemes whose solutions satisfy the requirement of nondecreasing entropy. The main consideration is given in the one-dimensional case. The technique is generalized to the multidimensional case. Examples are given of applying the technique to solving a number of well-known test problems in gas dynamics.
Keywords: gas dynamics, contact discontinuities, shock waves, rarefaction waves.
@article{MM_2023_35_2_a3,
     author = {I. V. Popov},
     title = {Technique for determining the types of fault in calculations of gas flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--56},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_2_a3/}
}
TY  - JOUR
AU  - I. V. Popov
TI  - Technique for determining the types of fault in calculations of gas flows
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 43
EP  - 56
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_2_a3/
LA  - ru
ID  - MM_2023_35_2_a3
ER  - 
%0 Journal Article
%A I. V. Popov
%T Technique for determining the types of fault in calculations of gas flows
%J Matematičeskoe modelirovanie
%D 2023
%P 43-56
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_2_a3/
%G ru
%F MM_2023_35_2_a3
I. V. Popov. Technique for determining the types of fault in calculations of gas flows. Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 43-56. http://geodesic.mathdoc.fr/item/MM_2023_35_2_a3/

[1] P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes”, J. Comp. Phys., 43 (1981), 357–372 | DOI | MR

[2] G. Sod, “A Survey of Several Finite Difference Methods Systems of Nonlinear Hyperbolic Conservation Laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR

[3] B. Van Leer, Lect. Notes Phys., 170, 1982, 507–512 | DOI

[4] E. F. Toro, TVD regions for the weighted average flux (WAF) method as applied to a model hyperbolic conservation law, Report 8907, College of Aeronautics, June 1989

[5] Guan-Shan Jiang, Chi-Wang Shu, “Efficient implementation of weighted ENO schemes”, J. Comp. Phys., 126 (1996), 202–228 | DOI | MR

[6] A. Harten, S. Osher, “Uniformly high-order accurate nonoscilatory schemes”, SIAM J. Numer. Anal., 24 (1987), 279–309 | DOI | MR

[7] N. A. Darin, V. I. Mazhukin, A. A. Samarskii, “Konechno-raznostnyi metod resheniia uravnenii gazovoi dinamiki s ispolzovaniem adaptivnykh setok, dinamicheski sviazannykh s resheniem”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1210–1225

[8] V. I. Pokhilko, V. F. Tishkin, “Odnorodnyi algoritm rascheta razryvnykh reshenii na adaptivnykh setkakh”, Matem. modelirovanie, 6:11 (1994), 25–40

[9] N. V. Mikhailova, V. F. Tishkin, N. N. Tiurina, A. P. Favorskii, M. Iu. Shashkov, “Chislennoe modelirovanie dvumernykh gazodinamicheskikh techenii na setke peremennoi struktury”, Zh. vychisl. matem. i matem. fiz., 26:9 (1986), 1392–1406 | MR

[10] B. L. Rozhdestvenskii, N. N. Ianenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniia k gazovoi dinamike, Nauka, M., 1968 | MR

[11] L. V. Ovsiannikov, Lektsii po osnovam gazovoi dinamiki, Institut kompiuternykh issledovanii, M.–Izhevsk, 2003 | MR

[12] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd edition, Butterworth-Heinemann, New York, 1987

[13] B. Riemann, “Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite”, Gött. Abh. Math. Cl., 8 (1860), 376–395

[14] N. E. Kochin, “K teorii razryvov zhidkosti”, Sobranie sochinenii, v. 2, 1948, 5–42 | MR

[15] L. D. Landau, E. M. Lifshitz, Continuum Mechanics, Gostekhizdat, M.–L., 1954 | MR

[16] S. K. Godunov, A. V. Zabrodin, M. Ia. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR

[17] I. V. Popov, I. V. Friazinov, “Adaptive Artificial Viscosity for Multidimensional Gas Dynamics for Euler Variables in Cartesian Coordinates”, Mathematical Models and Computer Simulations, 2:4 (2010), 429–442 | DOI | MR

[18] I. V. Popov, I. V. Fryazinov, “Method of adaptive artificial viscosity for gas dynamics equations on triangular and tetrahedral grids”, Math. Models Comput. Simul., 5:1 (2013), 50–62 | DOI | MR

[19] R. Liska, B. Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, 2001, November 22, 57 pp. http://www.math.ntnu.no/conservation | MR

[20] I. V. Popov, I. V. Fryazinov, Metod adaptivoy iskusstvennoy vyazkosti chislennogo resheniya uravneniy gazovoy dinamiki, KRASAND, M., 2014, 288 pp.