Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_2_a3, author = {I. V. Popov}, title = {Technique for determining the types of fault in calculations of gas flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--56}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_2_a3/} }
I. V. Popov. Technique for determining the types of fault in calculations of gas flows. Matematičeskoe modelirovanie, Tome 35 (2023) no. 2, pp. 43-56. http://geodesic.mathdoc.fr/item/MM_2023_35_2_a3/
[1] P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes”, J. Comp. Phys., 43 (1981), 357–372 | DOI | MR
[2] G. Sod, “A Survey of Several Finite Difference Methods Systems of Nonlinear Hyperbolic Conservation Laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR
[3] B. Van Leer, Lect. Notes Phys., 170, 1982, 507–512 | DOI
[4] E. F. Toro, TVD regions for the weighted average flux (WAF) method as applied to a model hyperbolic conservation law, Report 8907, College of Aeronautics, June 1989
[5] Guan-Shan Jiang, Chi-Wang Shu, “Efficient implementation of weighted ENO schemes”, J. Comp. Phys., 126 (1996), 202–228 | DOI | MR
[6] A. Harten, S. Osher, “Uniformly high-order accurate nonoscilatory schemes”, SIAM J. Numer. Anal., 24 (1987), 279–309 | DOI | MR
[7] N. A. Darin, V. I. Mazhukin, A. A. Samarskii, “Konechno-raznostnyi metod resheniia uravnenii gazovoi dinamiki s ispolzovaniem adaptivnykh setok, dinamicheski sviazannykh s resheniem”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1210–1225
[8] V. I. Pokhilko, V. F. Tishkin, “Odnorodnyi algoritm rascheta razryvnykh reshenii na adaptivnykh setkakh”, Matem. modelirovanie, 6:11 (1994), 25–40
[9] N. V. Mikhailova, V. F. Tishkin, N. N. Tiurina, A. P. Favorskii, M. Iu. Shashkov, “Chislennoe modelirovanie dvumernykh gazodinamicheskikh techenii na setke peremennoi struktury”, Zh. vychisl. matem. i matem. fiz., 26:9 (1986), 1392–1406 | MR
[10] B. L. Rozhdestvenskii, N. N. Ianenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniia k gazovoi dinamike, Nauka, M., 1968 | MR
[11] L. V. Ovsiannikov, Lektsii po osnovam gazovoi dinamiki, Institut kompiuternykh issledovanii, M.–Izhevsk, 2003 | MR
[12] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd edition, Butterworth-Heinemann, New York, 1987
[13] B. Riemann, “Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite”, Gött. Abh. Math. Cl., 8 (1860), 376–395
[14] N. E. Kochin, “K teorii razryvov zhidkosti”, Sobranie sochinenii, v. 2, 1948, 5–42 | MR
[15] L. D. Landau, E. M. Lifshitz, Continuum Mechanics, Gostekhizdat, M.–L., 1954 | MR
[16] S. K. Godunov, A. V. Zabrodin, M. Ia. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR
[17] I. V. Popov, I. V. Friazinov, “Adaptive Artificial Viscosity for Multidimensional Gas Dynamics for Euler Variables in Cartesian Coordinates”, Mathematical Models and Computer Simulations, 2:4 (2010), 429–442 | DOI | MR
[18] I. V. Popov, I. V. Fryazinov, “Method of adaptive artificial viscosity for gas dynamics equations on triangular and tetrahedral grids”, Math. Models Comput. Simul., 5:1 (2013), 50–62 | DOI | MR
[19] R. Liska, B. Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, 2001, November 22, 57 pp. http://www.math.ntnu.no/conservation | MR
[20] I. V. Popov, I. V. Fryazinov, Metod adaptivoy iskusstvennoy vyazkosti chislennogo resheniya uravneniy gazovoy dinamiki, KRASAND, M., 2014, 288 pp.