Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_1_a6, author = {N. A. Zverev and A. V. Zemskov}, title = {Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {95--112}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/} }
TY - JOUR AU - N. A. Zverev AU - A. V. Zemskov TI - Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation JO - Matematičeskoe modelirovanie PY - 2023 SP - 95 EP - 112 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/ LA - ru ID - MM_2023_35_1_a6 ER -
%0 Journal Article %A N. A. Zverev %A A. V. Zemskov %T Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation %J Matematičeskoe modelirovanie %D 2023 %P 95-112 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/ %G ru %F MM_2023_35_1_a6
N. A. Zverev; A. V. Zemskov. Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 95-112. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/
[1] V. S. Eremeev, Diffuziia i napryazheniia, Energoatomizdat, M., 1984, 182 pp. | MR
[2] A. G. Knyazeva, Vvedenie v termodinamiku neobratimykh protsessov, Ivan Fedorov, Tomsk, 2014, 172 pp.
[3] W. Nowacki, “Dynamical Problems of Thermodiffusion in Solids”, Proc. Vib. Prob., 15 (1974), 105–128 | MR
[4] A. V. Minov, “Issledovanie napriazhenno-deformirovannogo sostoianiia pologo tsilindra, podverzhennogo termodiffuzionnomu vozdeistviiu ugleroda v osesimmetrichnom teplovom pole, peremennom po dline”, Izvestiia vuzov. Mashinostroenie, 2008, no. 10, 21–26
[5] A. I. Abbas, “The effect of thermal source with mass diffusion in a transversely isotropic thermoelastic infinite medium”, J. of Measurements in Engineering, 2:4 (2014), 175–184
[6] A. I. Abbas, “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity”, Applied Mathematical Modelling, 39:20 (2015), 6196–6206 | DOI | MR
[7] M. Aouadi, “A generalized thermoelastic diffusion problem for an infinitely long solid cylinder”, Inter. J. Mathematics and Mathematical Sci, 2006 (2006), 1–15 | DOI | MR
[8] M. Aouadi, “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion”, International Journal of Solids and Structures, 44 (2007), 5711–5722 | DOI | MR
[9] S. Y. Atwa, Z. Egypt, “Generalized Thermoelastic Diffusion with Effect of Fractional Parameter on Plane Waves Temperature-Dependent Elastic Medium”, Journal of Materials and Chemical Engineering, 1:2 (2013), 55–74 | MR
[10] D. Bhattacharya, M. Kanoria, “The influence of two temperature generalized thermoelastic diffusion inside a spherical shell”, International Journal of Engineering and Technical Research (IJETR), 2:5 (2014), 151–159
[11] D. Bhattacharya, P. Pal, M. Kanoria, “Finite Element Method to Study Elasto-Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect”, International Journal of Computer Sciences and Engineering, 7:1 (2019), 148–156 | DOI
[12] S. Deswal, K. K. Kalkal, S. S. Sheoran, “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Physica B: Condensed Matter, 496 (2016), 57–68 | DOI
[13] M. A. Elhagary, “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218 (2011), 205–215 | DOI
[14] M. A. Elhagary, “Generalized thermoelastic diffusion problem for an infinite medium with a Spherical Cavity”, Int. J. Thermophys., 33 (2012), 172–183 | DOI
[15] R. Kumar, S. Devi, “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST, 25:4 (2019), 167–176
[16] Z. S. Olesiak, Yu. A. Pyryev, “A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder”, International Journal of Engineering Science, 33:6 (1995), 773–780 | DOI
[17] R. M. Shvets, “On the deformability of anisotropic viscoelastic bodies in the presence of thermodiffusion”, Journal of Mathematical Science, 97:1 (1999), 3830–3839 | DOI
[18] R. H. Xia, X. G. Tian, Y. P. Shen, “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity”, International Journal of Engineering Science, 47 (2009), 669–679 | DOI | MR
[19] A. V. Zemskov, D. V. Tarlakovskij, Modelirovanie mekhanodiffuzionnykh protsessov v mno-gokomponentnykh telakh s ploskimi granitsami, Fizmatlit, M., 2021, 288 pp.
[20] N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskij, “Nestatsionarnaia mekhanodiffuziia sploshnogo ortotropnogo tsilindra, nakhodiashchegosia pod deistviem ravnomernogo davleniia, s uchetom relaksatsii diffuzionnykh potokov”, Mekhanika kompozitsionnykh materialov i konstrukcii, 27:4 (2021), 570–586
[21] N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady Coupled Elastic Diffusion Processes in an Orthotropic Cylinder Taking into Account Diffusion Fluxes Relaxation”, Russian Mathematics, 66:1 (2022), 20–30
[22] E. Janke, F. Emde, F. Loch, Tafeln hoherer funktionen, B.G. Teubner Verlagsellschaft, Stutgard, 1960 | MR
[23] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniiam, 4-e izd., Nauka, M., 1971, 576 pp.
[24] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Differentcialnye uravneniia matematicheskoi fiziki, Gos. izd-vo fiz. mat. literatury, M., 1962, 768 pp. | MR
[25] V. A. Ditkin, A. P. Prudnikov, Spravochnik po operatsionnomu ischisleniiu, Vysshaia Shkola, M., 1965, 568 pp.
[26] A. P. Babichev, N. A. Babushkina, A. M. Bratkovskij i dr., Fizicheskiye velichiny, Spravochnik, Energoatomizdat, M., 1991, 1232 pp.
[27] A. V. Vestyak, A. V. Zemskov, “Unsteady Elastic Diffusion Model of a Simply Supported Timoshenko Beam Vibrations”, Mechanics of Solids, 55:5 (2020), 690–700 | DOI | MR
[28] A. V. Zemskov, A. S. Okonechnikov, D. V. Tarlakovskii, “Unsteady elastic-diffusion oscillations of a simply supported Euler-Bernoulli beam under the distributed transverse load action”, Multiscale Solid Mechanics. Strength, Durability, and Dynamics, Advanced Structured Materials, 141, Springer, Cham, 2021, 487–499 | DOI
[29] K. Nirano, M. Cohen, V. Averbach, N. Ujiiye, “Self-Diffusion in Alpha Iron During Compressive Plastic Flow”, Transactions of the Metallurgical Society of AIME, 227 (1963), 950