Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation
Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 95-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional problem of elastic diffusion for a hollow orthotropic multicomponent cylinder under the action of external pressure, which is uniformly distributed over its inner and outer surfaces is considered. The mathematical model includes a system of equations of elastic diffusion in a cylindrical coordinate system, which takes into account relaxation diffusion effects, implying finite propagation velocities of diffusion processes. The problem is solved by the method of equivalent boundary conditions, according to which auxiliary problem is considered, the solution of which is obtained by expanding into series in terms of eigenfunctions of the elastic-diffusion operator. Further, the relations that connects the right parts of the boundary conditions of both problems is constructed. This relations represents a system integral equation. Its solution is sought using quadrature formulas. A calculation example for a three-component hollow cylinder is considered.
Mots-clés : elastic diffusion, Laplace transform
Keywords: unsteady problems, Green's functions, method of equivalent boundary conditions, hollow cylinder.
@article{MM_2023_35_1_a6,
     author = {N. A. Zverev and A. V. Zemskov},
     title = {Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--112},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/}
}
TY  - JOUR
AU  - N. A. Zverev
AU  - A. V. Zemskov
TI  - Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 95
EP  - 112
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/
LA  - ru
ID  - MM_2023_35_1_a6
ER  - 
%0 Journal Article
%A N. A. Zverev
%A A. V. Zemskov
%T Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation
%J Matematičeskoe modelirovanie
%D 2023
%P 95-112
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/
%G ru
%F MM_2023_35_1_a6
N. A. Zverev; A. V. Zemskov. Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 95-112. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a6/

[1] V. S. Eremeev, Diffuziia i napryazheniia, Energoatomizdat, M., 1984, 182 pp. | MR

[2] A. G. Knyazeva, Vvedenie v termodinamiku neobratimykh protsessov, Ivan Fedorov, Tomsk, 2014, 172 pp.

[3] W. Nowacki, “Dynamical Problems of Thermodiffusion in Solids”, Proc. Vib. Prob., 15 (1974), 105–128 | MR

[4] A. V. Minov, “Issledovanie napriazhenno-deformirovannogo sostoianiia pologo tsilindra, podverzhennogo termodiffuzionnomu vozdeistviiu ugleroda v osesimmetrichnom teplovom pole, peremennom po dline”, Izvestiia vuzov. Mashinostroenie, 2008, no. 10, 21–26

[5] A. I. Abbas, “The effect of thermal source with mass diffusion in a transversely isotropic thermoelastic infinite medium”, J. of Measurements in Engineering, 2:4 (2014), 175–184

[6] A. I. Abbas, “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity”, Applied Mathematical Modelling, 39:20 (2015), 6196–6206 | DOI | MR

[7] M. Aouadi, “A generalized thermoelastic diffusion problem for an infinitely long solid cylinder”, Inter. J. Mathematics and Mathematical Sci, 2006 (2006), 1–15 | DOI | MR

[8] M. Aouadi, “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion”, International Journal of Solids and Structures, 44 (2007), 5711–5722 | DOI | MR

[9] S. Y. Atwa, Z. Egypt, “Generalized Thermoelastic Diffusion with Effect of Fractional Parameter on Plane Waves Temperature-Dependent Elastic Medium”, Journal of Materials and Chemical Engineering, 1:2 (2013), 55–74 | MR

[10] D. Bhattacharya, M. Kanoria, “The influence of two temperature generalized thermoelastic diffusion inside a spherical shell”, International Journal of Engineering and Technical Research (IJETR), 2:5 (2014), 151–159

[11] D. Bhattacharya, P. Pal, M. Kanoria, “Finite Element Method to Study Elasto-Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect”, International Journal of Computer Sciences and Engineering, 7:1 (2019), 148–156 | DOI

[12] S. Deswal, K. K. Kalkal, S. S. Sheoran, “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Physica B: Condensed Matter, 496 (2016), 57–68 | DOI

[13] M. A. Elhagary, “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218 (2011), 205–215 | DOI

[14] M. A. Elhagary, “Generalized thermoelastic diffusion problem for an infinite medium with a Spherical Cavity”, Int. J. Thermophys., 33 (2012), 172–183 | DOI

[15] R. Kumar, S. Devi, “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST, 25:4 (2019), 167–176

[16] Z. S. Olesiak, Yu. A. Pyryev, “A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder”, International Journal of Engineering Science, 33:6 (1995), 773–780 | DOI

[17] R. M. Shvets, “On the deformability of anisotropic viscoelastic bodies in the presence of thermodiffusion”, Journal of Mathematical Science, 97:1 (1999), 3830–3839 | DOI

[18] R. H. Xia, X. G. Tian, Y. P. Shen, “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity”, International Journal of Engineering Science, 47 (2009), 669–679 | DOI | MR

[19] A. V. Zemskov, D. V. Tarlakovskij, Modelirovanie mekhanodiffuzionnykh protsessov v mno-gokomponentnykh telakh s ploskimi granitsami, Fizmatlit, M., 2021, 288 pp.

[20] N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskij, “Nestatsionarnaia mekhanodiffuziia sploshnogo ortotropnogo tsilindra, nakhodiashchegosia pod deistviem ravnomernogo davleniia, s uchetom relaksatsii diffuzionnykh potokov”, Mekhanika kompozitsionnykh materialov i konstrukcii, 27:4 (2021), 570–586

[21] N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady Coupled Elastic Diffusion Processes in an Orthotropic Cylinder Taking into Account Diffusion Fluxes Relaxation”, Russian Mathematics, 66:1 (2022), 20–30

[22] E. Janke, F. Emde, F. Loch, Tafeln hoherer funktionen, B.G. Teubner Verlagsellschaft, Stutgard, 1960 | MR

[23] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniiam, 4-e izd., Nauka, M., 1971, 576 pp.

[24] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Differentcialnye uravneniia matematicheskoi fiziki, Gos. izd-vo fiz. mat. literatury, M., 1962, 768 pp. | MR

[25] V. A. Ditkin, A. P. Prudnikov, Spravochnik po operatsionnomu ischisleniiu, Vysshaia Shkola, M., 1965, 568 pp.

[26] A. P. Babichev, N. A. Babushkina, A. M. Bratkovskij i dr., Fizicheskiye velichiny, Spravochnik, Energoatomizdat, M., 1991, 1232 pp.

[27] A. V. Vestyak, A. V. Zemskov, “Unsteady Elastic Diffusion Model of a Simply Supported Timoshenko Beam Vibrations”, Mechanics of Solids, 55:5 (2020), 690–700 | DOI | MR

[28] A. V. Zemskov, A. S. Okonechnikov, D. V. Tarlakovskii, “Unsteady elastic-diffusion oscillations of a simply supported Euler-Bernoulli beam under the distributed transverse load action”, Multiscale Solid Mechanics. Strength, Durability, and Dynamics, Advanced Structured Materials, 141, Springer, Cham, 2021, 487–499 | DOI

[29] K. Nirano, M. Cohen, V. Averbach, N. Ujiiye, “Self-Diffusion in Alpha Iron During Compressive Plastic Flow”, Transactions of the Metallurgical Society of AIME, 227 (1963), 950