Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_1_a5, author = {I. V. Semenova and R. E. Ildiyarov}, title = {Study of a celular operator servers load forecasting models efficiency}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {83--94}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a5/} }
TY - JOUR AU - I. V. Semenova AU - R. E. Ildiyarov TI - Study of a celular operator servers load forecasting models efficiency JO - Matematičeskoe modelirovanie PY - 2023 SP - 83 EP - 94 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a5/ LA - ru ID - MM_2023_35_1_a5 ER -
I. V. Semenova; R. E. Ildiyarov. Study of a celular operator servers load forecasting models efficiency. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a5/
[1] V. M. Bezruk, I. V. Korsun, V. A. Tikhonov, N. V. Kudriavtseva, “Issledovanie vozmozhnoste prognozirovaniia trafika seti mobilno cviazi”, Vostochno-Evropeski zhurnal peredovykh tekhnologi, 2010, no. 4/9(46), 58–62
[2] Du Xunsheng, H. Zhang, H. V. Nguyen, “Stacked LSTM Deep Learning Model for Traffic Prediction in Vehicle-to-Vehicle Communication”, 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (Toronto, ON, Canada, 2017), 1–5
[3] A. R. Abdellah, A. K. Mahmood, A. Paramonov, A. Koucheryavy, “IoT traffic prediction using multi-step ahead prediction with neural network”, 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2019, 1–4
[4] L. Paradis, Q. Han, “A survey of fault management in wireless sensor networks”, Journal of Network and Systems Management, 15:2 (2007), 171–190 | DOI | MR
[5] M. E. M. Cayamcela, W. Lim, “Artificial intelligence in 5G technology: A survey”, Proc. Int. Conf. Inf. Commun. Technol. Converg., ICTC (Oct. 2018), v. 1, 860–865
[6] J.E.P. Box, G.M. Jenkins, Time series analysis, Holden-Day, San Francisco, 1970, 553 pp. | MR
[7] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, N.Y., 2009 | MR
[8] E. Z. Demidenko, Linenaia i nelinenaia regressiia, Finansy i statistika, M., 1981, 302 pp. | MR
[9] F. R. Scott, Accurately Measuring Model Prediction Error, , 2012 http://scott.fortmann-roe.com/docs/MeasuringError.html
[10] M. Mullin, R. Sukthankar, “Complete cross-validation for nearest neighbor classifiers”, Proc. of International Conference on Machine Learning (San Francisco, CA, 2000)
[11] L. Breiman, “Random Forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | MR
[12] R. E. Ildiiarov, I. V. Semenova, “Primenenie mnozhestvenno regressii dlia prognozirovaniia peregruzki serverov mobilnykh operatorov”, XXV Tupolevskie chteniia (shkola molodykh uchenykh), Mezhdunarodnaia molodezhnaia nauchnaia konferentsiia, Sbornik dokladov (10-11 noiabria 2021), v. 5, Izd-vo IP Sagieva A.P., Kazan, 2021, 309–312