Experimental and numerical investigation of the dynamics of development of Rayleigh--Taylor instability at Atwood numbers close to unity
Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 59-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the experimental and numerical results of studying the growth dynamics of deterministic, given in a certain way initial perturbations. The formation, growth and further evolution of inhomogeneities of the contact boundary occurs due to the development of the Rayleigh–Taylor instability at the gas-liquid interface, in particular (in this work), air-water. A significant difference in the densities of the selected substances leads to a noticeable slowdown in the dynamics of the Kelvin–Helmholtz instability, which is responsible for the formation of mushrooms-like structures, and, as a result, to a longer growth of water jets and a later moment of their destruction and transition to mixing. In this work, a quantitative comparison of physical data recorded on the original experimental setup, which is described in this paper, with the calculated data obtained using various numerical methods is carried out. Numerical modeling is based on a complete 2D hydrodynamic model for describing the dynamics of development of the RayleighTaylor instability. Surface tension (water-air) and viscosity (water or air) are neglected in this study. The parameters of the development of instability measured in the experiment and found in the calculations indicate a satisfactory agreement between the obtained data. The quantitative results presented in this study justify the use of the classical hydrodynamics model to describe the movements of liquid and gas observed in this experiment and a fairly accurate numerical implementation of the corresponding model in the difference methods used here. An essential element of the study is the investigation of the development of turbulent mixing depending on well-defined initial conditions, and the new regularities of the laws of mixing of different-density media that arise in this case.
Keywords: Rayleigh–Taylor instability, fluid/gas contact interface, experiment, numerical modeling.
@article{MM_2023_35_1_a4,
     author = {M. D. Bragin and S. Yu. Gus'kov and N. V. Zmitrenko and P. A. Kuchugov and I. G. Lebo and E. V. Levkina and N. V. Nevmerzhitskiy and O. G. Sin'kova and V. P. Statsenko and V. F. Tishkin and I. R. Farin and Yu. V. Yanilkin and R. A. Yakhin},
     title = {Experimental and numerical investigation of the dynamics of development of {Rayleigh--Taylor} instability at {Atwood} numbers close to unity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--82},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/}
}
TY  - JOUR
AU  - M. D. Bragin
AU  - S. Yu. Gus'kov
AU  - N. V. Zmitrenko
AU  - P. A. Kuchugov
AU  - I. G. Lebo
AU  - E. V. Levkina
AU  - N. V. Nevmerzhitskiy
AU  - O. G. Sin'kova
AU  - V. P. Statsenko
AU  - V. F. Tishkin
AU  - I. R. Farin
AU  - Yu. V. Yanilkin
AU  - R. A. Yakhin
TI  - Experimental and numerical investigation of the dynamics of development of Rayleigh--Taylor instability at Atwood numbers close to unity
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 59
EP  - 82
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/
LA  - ru
ID  - MM_2023_35_1_a4
ER  - 
%0 Journal Article
%A M. D. Bragin
%A S. Yu. Gus'kov
%A N. V. Zmitrenko
%A P. A. Kuchugov
%A I. G. Lebo
%A E. V. Levkina
%A N. V. Nevmerzhitskiy
%A O. G. Sin'kova
%A V. P. Statsenko
%A V. F. Tishkin
%A I. R. Farin
%A Yu. V. Yanilkin
%A R. A. Yakhin
%T Experimental and numerical investigation of the dynamics of development of Rayleigh--Taylor instability at Atwood numbers close to unity
%J Matematičeskoe modelirovanie
%D 2023
%P 59-82
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/
%G ru
%F MM_2023_35_1_a4
M. D. Bragin; S. Yu. Gus'kov; N. V. Zmitrenko; P. A. Kuchugov; I. G. Lebo; E. V. Levkina; N. V. Nevmerzhitskiy; O. G. Sin'kova; V. P. Statsenko; V. F. Tishkin; I. R. Farin; Yu. V. Yanilkin; R. A. Yakhin. Experimental and numerical investigation of the dynamics of development of Rayleigh--Taylor instability at Atwood numbers close to unity. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 59-82. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/

[1] Lord Rayleigh, “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density”, Proc. Lond. Math. Soc., 14 (1883), 170–177 | MR

[2] G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their plane. I”, Proc. R. Soc. Lond. A, 201 (1950), 192–196 | DOI | MR

[3] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Commun. Pure Appl. Math., 13:2 (1960), 297–319 | DOI | MR

[4] E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave”, Soviet Fluid Dynamics, 4:5 (1969), 101–104 | DOI

[5] H. von Helmholtz, “Über discontinuierliche Flüssigkeits-Bewegungen”, Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin, 23 (1868), 215–228

[6] Ya. V. Babkin, “Chislennoe modelirovanie turbulentnogo rastekaniia zhidkosti pod deistviem sily tiazhesti v melkovodnykh ustiakh rek”, Izv. RAN, MZhG, 1999, no. 3, 172–178

[7] G. Birkhoff, R. Bellman, C.C. Lin (eds.), Hydrodynamic instability, Proceedings of the 13th Symposium in Applied Mathematics of the American Mathematical Society, American Mathematical Society, 1962, 328 pp. | MR

[8] A. V. Gorodnichev, G. V. Dolgoleva, V. A. Zhmajlo, E. A. Novikova, V. P. Stacenko, “Chislennoe modelirovanie vzaimodeistviia pulsarnogo vetra s obolochkoi Sverkhnovoi v Krabovidnoi tumannosti”, Trudy RFYAC-VNIIEF, 11 (2007), 26–39

[9] O. B. Drennov, Sdvigovaia neustoichivost v sredakh, obladaiushchikh prochnostiu, Monografiia, FGUPRFYAC-VNIIEF, Sarov, 2014, 199 pp.

[10] R. P. Drake, C. C. Kuranz, A. R. Miles, H. J. Muthsam, T. Plewa, “Stellar explosions, instabilities, and turbulence”, Physics of Plasmas, 16:4 (2009), 041004 | DOI

[11] N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, V. S. Belyaev, “Ejection of heavy elements from the stellar core to the periphery of the cloud of ejecta during a supernova explosion: A possible model of the processes”, JETP, 118:3 (2014), 384–394 | DOI

[12] E. G. Gamalii, V. B. Rozanov, A. A. Samarskii, V. F. Tishkin, N. N. Tyurina, A. P. Favorskii, “Hydrodynamic stability of compression of spherical laser targets”, JETP, 52:2 (1980), 230–237

[13] S. A. Bel'kov, S. V. Bondarenko, N. N. Demchenko, S. G. Garanin, S. Yu. Gus'kov, P. A. Kuchu-gov, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, N. V. Zmitrenko, “Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser”, Plasma Phys. Controlled Fusion, 61:2 (2019), 025011 | DOI

[14] E. E. Meshkov, Neustoichivost Releia-Teilora. Issledovaniia gidrodinamicheskikh neustoichivostei v laboratornykh eksperimentakh, Tipografiia «Krasnyi Oktiabr», Sarov–Saransk, 2002, 68 pp.

[15] D. J. Lewis, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II”, Proc. R. Soc. Lond. A, 202 (1950), 81–96 | DOI

[16] D. Layzer, “On the instability of superposed fluids in a gravitational field”, Astrophys. J., 122 (1955), 1–12 | DOI | MR

[17] V. N. Goncharov, “Analytical model of nonlinear-single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers”, Phys. Rev. Lett., 88 (2002), 134502 | DOI | MR

[18] K. O. Mikaelian, “Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers”, Phys. Rev. E, 67:2 (2003), 026319 | DOI | MR

[19] S.-I. Sohn, “Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios”, Phys. Rev. E, 67:2 (2003), 026301 | DOI

[20] E. Fermi, J. von Neumann, Taylor instability of incompressible liquids, report AECU-2979, Los Alamos Scientific Laboratory, Los Alamos, 1955, 13 pp.

[21] G. Birkhoff, Taylor instability, laminar mixing, report LA-1862, Los Alamos Scientific Laboratory, Los Alamos, 1955, 77 pp.

[22] S. W. Haan, “Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes”, Phys. Rev. A, 39:11 (1989), 5812–5825 | DOI

[23] S. W. Haan, “Weakly nonlinear hydrodynamic instabilities in inertial fusion”, Phys. Fluids B, 3:8 (1991), 2349–2355 | DOI

[24] N. V. Zmitrenko, N. G. Proncheva, V. B. Rozanov, Evoluitsionnaia model turbulentnogo sloia peremeshivaniia, preprint No 65, FIAN, 1997, 24 pp.

[25] K. O. Mikaelian, “Solution to Rayleigh-Taylor instabilities: bubbles, spikes, and their scalings”, Phys. Rev. E, 89:5 (2014), 053009 | DOI

[26] I. G. Lebo, V. V. Nikishin, V. B. Rozanov, V. F. Tishkin, “Numerical simulation of evolution of multimode initial perturbations in the development of Richtmyer-Meshkov instabilities”, Journ. Of Russian Laser Research, 19:5 (1998), 483–504 | DOI

[27] D. L. Youngs, “Numerical simulation of turbulent mixing by Rayleigh-Taylor instability”, Physica D: Nonlinear Phenomena, 12:1-3 (1984), 32–44 | DOI | MR

[28] S. Z. Belen'kij, E. S. Fradkin, “Teoriia turbulentnogo peremeshivaniia”, Trudy Fizicheskogo instituta im. P.N. Lebedeva, 29 (1965), 207–241

[29] K. I. Read, “Experimental investigation for turbulent mixing by Rayleigh-Talor instability”, Physica D: Nonlinear Phenomena, 12:1-3 (1984), 45–58 | DOI

[30] Yu. A. Kucherenko, S. I. Balabin, N. N. Anuchina, V. I. Volkov, R. I. Ardashova, O. E. Kozel'kov, A. V. Dulov, L. A. Romanov, “Experimental investigation into periodic perturbation development against turbulent mixing about the contact boundary of heterodense liquids”, Proc. of 7th IWPCTM, 1999, 75–79

[31] A. N. Aleshin, E. V. Lazareva, S. G. Zaitsev, V. B. Rozanov, E. G. Gamalii, I. G. Lebo, “A study of linear, non-linear and transition stages of Richtmyer-Meshkov instability”, Doklady Mathematics, 35:2 (1990), 177–180

[32] Y. Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I”, Phys. Reports, 720-722 (2017), 1–136 | MR

[33] Y. Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II”, Phys. Reports, 723-725 (2017), 1–160 | MR

[34] G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. Mac-Neice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y. N. Young, M. Zingale, “A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration”, Phys. Fluids, 16 (2004), 1668–1693 | DOI

[35] B. Thornber, J. Griffond, O. Poujade, N. Attal, H. Varshochi, P. Bigdelou, P. Ramaprabhu, B. Olson, J. Greenough, Y. Zhou, O. Schilling, K. A. Garside, R. J.R. Williams, C. A. Batha, P. A. Kuchugov, M. E. Ladonkina, V. F. Tishkin, N. V. Zmitrenko, V. B. Rozanov, D. L. Youngs, “Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability: the $\theta$-group collaboration”, Phys. Fluids, 29 (2017), 105107 | DOI

[36] A. A. Tyaktev, A. V. Pavlenko, N. B. Anikin, Yu. A. Piskunov, I. L. Bugaenko, A. M. Andreev, S. S. Mokrushin, Eksperimentalnoe issledovanie kharakteristik zony turbulentnogo peremeshivaniia gazovykh sred, vyzvannoi deistviem neustoichivosti Releya-Tejlora, pri chislakh Atvuda 0.2 i 0.8, RFYAC-VNIITF, Snezhinsk, 2015

[37] J. W. Jacobs, M. A. Jones, C. E. Niederhaus, “Experimental Studies of Richtmyer-Meshkov Instability”, Proceedings of 5th IWPCTM, 1995, 195–202

[38] N. V. Nevmerzhickij, Gidrodinamicheskie neustoichivosti i turbulentnoe peremeshivanie veshchestv. Laboratornoe modelirovanie, ed. A. L. Mihajlov, FGUP-RFYAC-VNIIEF, Sarov, 2018, 246 pp.

[39] L. D. Landau, E. M. Lifschitz, Course of Theoretical Physics, v. VI, Fluid Mechanics, Pergamon Press, New York, 1987, 551 pp. | MR

[40] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorski, “Postroenie monotonnykh raznostnykh skhem povyshennogo poriadka approksimatsii dlia system uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 1:5 (1989), 95–120 | MR

[41] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorski, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlia zadachi o razvitii neustoichivosti Richtmyera-Meshkova”, Matem. modelirovanie, 7:5 (1995), 15–25 | MR

[42] I. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoiadernogo sinteza metodami matematicheskogo modelirovaniia, Fizmatlit, M., 2006, 304 pp.

[43] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR

[44] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR

[45] Yu. V. YAnilkin, S. P. Belyaev, Yu. A. Bondarenko, E. S. Gavrilova, E. A. Goncharov, A. D. Gorbenko, A. V. Gorodnichev, E. V. Gubkov, A. R. Guzhova, L. I. Degtyarenko, G. V. Zharo-va, V. Yu. Kolobyanin, V. N. Sofronov, A. L. Stadnik, N. A. Hovrin, O. N. Chernyshova, I. N. Chistyakova, V. N. Shemyakov, “Eilerovy chislennye metodiki EGAK i TREK dlia modelirovaniia mnogomernykh techenii mnogokomponentnoi sredy”, Trudy RFYAC-VNIIEF, 12 (2008), 54–65

[46] Yu. V. Yanilkin, “Chislennoe issledovanie vzaimodeistviia zony turbulentnogo peremeshivaniia i lokalnykh vozmushchenii granitsy razdela v zadache gravitatsionnogo turbulentnogo peremeshivaniia”, VANT, ser. Matem. Modelir. fizicheskikh protsessov, 3 (2019), 3–18

[47] V. P. Stacenko, Yu. V. Yanilkin, O. G. Sin'kova, A. L. Stadnik, “Stepen gomogennogo smesheniia po rezultatam 3D chislennykh raschetov gravitatsionnogo turbulentnogo peremeshivaniia”, VANT, ser. Teoreticheskaia i prikladnaia fizika, 2–3 (2007), 32–40