Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_1_a4, author = {M. D. Bragin and S. Yu. Gus'kov and N. V. Zmitrenko and P. A. Kuchugov and I. G. Lebo and E. V. Levkina and N. V. Nevmerzhitskiy and O. G. Sin'kova and V. P. Statsenko and V. F. Tishkin and I. R. Farin and Yu. V. Yanilkin and R. A. Yakhin}, title = {Experimental and numerical investigation of the dynamics of development of {Rayleigh--Taylor} instability at {Atwood} numbers close to unity}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--82}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/} }
TY - JOUR AU - M. D. Bragin AU - S. Yu. Gus'kov AU - N. V. Zmitrenko AU - P. A. Kuchugov AU - I. G. Lebo AU - E. V. Levkina AU - N. V. Nevmerzhitskiy AU - O. G. Sin'kova AU - V. P. Statsenko AU - V. F. Tishkin AU - I. R. Farin AU - Yu. V. Yanilkin AU - R. A. Yakhin TI - Experimental and numerical investigation of the dynamics of development of Rayleigh--Taylor instability at Atwood numbers close to unity JO - Matematičeskoe modelirovanie PY - 2023 SP - 59 EP - 82 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/ LA - ru ID - MM_2023_35_1_a4 ER -
%0 Journal Article %A M. D. Bragin %A S. Yu. Gus'kov %A N. V. Zmitrenko %A P. A. Kuchugov %A I. G. Lebo %A E. V. Levkina %A N. V. Nevmerzhitskiy %A O. G. Sin'kova %A V. P. Statsenko %A V. F. Tishkin %A I. R. Farin %A Yu. V. Yanilkin %A R. A. Yakhin %T Experimental and numerical investigation of the dynamics of development of Rayleigh--Taylor instability at Atwood numbers close to unity %J Matematičeskoe modelirovanie %D 2023 %P 59-82 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/ %G ru %F MM_2023_35_1_a4
M. D. Bragin; S. Yu. Gus'kov; N. V. Zmitrenko; P. A. Kuchugov; I. G. Lebo; E. V. Levkina; N. V. Nevmerzhitskiy; O. G. Sin'kova; V. P. Statsenko; V. F. Tishkin; I. R. Farin; Yu. V. Yanilkin; R. A. Yakhin. Experimental and numerical investigation of the dynamics of development of Rayleigh--Taylor instability at Atwood numbers close to unity. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 59-82. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a4/
[1] Lord Rayleigh, “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density”, Proc. Lond. Math. Soc., 14 (1883), 170–177 | MR
[2] G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their plane. I”, Proc. R. Soc. Lond. A, 201 (1950), 192–196 | DOI | MR
[3] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Commun. Pure Appl. Math., 13:2 (1960), 297–319 | DOI | MR
[4] E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave”, Soviet Fluid Dynamics, 4:5 (1969), 101–104 | DOI
[5] H. von Helmholtz, “Über discontinuierliche Flüssigkeits-Bewegungen”, Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin, 23 (1868), 215–228
[6] Ya. V. Babkin, “Chislennoe modelirovanie turbulentnogo rastekaniia zhidkosti pod deistviem sily tiazhesti v melkovodnykh ustiakh rek”, Izv. RAN, MZhG, 1999, no. 3, 172–178
[7] G. Birkhoff, R. Bellman, C.C. Lin (eds.), Hydrodynamic instability, Proceedings of the 13th Symposium in Applied Mathematics of the American Mathematical Society, American Mathematical Society, 1962, 328 pp. | MR
[8] A. V. Gorodnichev, G. V. Dolgoleva, V. A. Zhmajlo, E. A. Novikova, V. P. Stacenko, “Chislennoe modelirovanie vzaimodeistviia pulsarnogo vetra s obolochkoi Sverkhnovoi v Krabovidnoi tumannosti”, Trudy RFYAC-VNIIEF, 11 (2007), 26–39
[9] O. B. Drennov, Sdvigovaia neustoichivost v sredakh, obladaiushchikh prochnostiu, Monografiia, FGUPRFYAC-VNIIEF, Sarov, 2014, 199 pp.
[10] R. P. Drake, C. C. Kuranz, A. R. Miles, H. J. Muthsam, T. Plewa, “Stellar explosions, instabilities, and turbulence”, Physics of Plasmas, 16:4 (2009), 041004 | DOI
[11] N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, V. S. Belyaev, “Ejection of heavy elements from the stellar core to the periphery of the cloud of ejecta during a supernova explosion: A possible model of the processes”, JETP, 118:3 (2014), 384–394 | DOI
[12] E. G. Gamalii, V. B. Rozanov, A. A. Samarskii, V. F. Tishkin, N. N. Tyurina, A. P. Favorskii, “Hydrodynamic stability of compression of spherical laser targets”, JETP, 52:2 (1980), 230–237
[13] S. A. Bel'kov, S. V. Bondarenko, N. N. Demchenko, S. G. Garanin, S. Yu. Gus'kov, P. A. Kuchu-gov, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, N. V. Zmitrenko, “Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser”, Plasma Phys. Controlled Fusion, 61:2 (2019), 025011 | DOI
[14] E. E. Meshkov, Neustoichivost Releia-Teilora. Issledovaniia gidrodinamicheskikh neustoichivostei v laboratornykh eksperimentakh, Tipografiia «Krasnyi Oktiabr», Sarov–Saransk, 2002, 68 pp.
[15] D. J. Lewis, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II”, Proc. R. Soc. Lond. A, 202 (1950), 81–96 | DOI
[16] D. Layzer, “On the instability of superposed fluids in a gravitational field”, Astrophys. J., 122 (1955), 1–12 | DOI | MR
[17] V. N. Goncharov, “Analytical model of nonlinear-single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers”, Phys. Rev. Lett., 88 (2002), 134502 | DOI | MR
[18] K. O. Mikaelian, “Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers”, Phys. Rev. E, 67:2 (2003), 026319 | DOI | MR
[19] S.-I. Sohn, “Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios”, Phys. Rev. E, 67:2 (2003), 026301 | DOI
[20] E. Fermi, J. von Neumann, Taylor instability of incompressible liquids, report AECU-2979, Los Alamos Scientific Laboratory, Los Alamos, 1955, 13 pp.
[21] G. Birkhoff, Taylor instability, laminar mixing, report LA-1862, Los Alamos Scientific Laboratory, Los Alamos, 1955, 77 pp.
[22] S. W. Haan, “Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes”, Phys. Rev. A, 39:11 (1989), 5812–5825 | DOI
[23] S. W. Haan, “Weakly nonlinear hydrodynamic instabilities in inertial fusion”, Phys. Fluids B, 3:8 (1991), 2349–2355 | DOI
[24] N. V. Zmitrenko, N. G. Proncheva, V. B. Rozanov, Evoluitsionnaia model turbulentnogo sloia peremeshivaniia, preprint No 65, FIAN, 1997, 24 pp.
[25] K. O. Mikaelian, “Solution to Rayleigh-Taylor instabilities: bubbles, spikes, and their scalings”, Phys. Rev. E, 89:5 (2014), 053009 | DOI
[26] I. G. Lebo, V. V. Nikishin, V. B. Rozanov, V. F. Tishkin, “Numerical simulation of evolution of multimode initial perturbations in the development of Richtmyer-Meshkov instabilities”, Journ. Of Russian Laser Research, 19:5 (1998), 483–504 | DOI
[27] D. L. Youngs, “Numerical simulation of turbulent mixing by Rayleigh-Taylor instability”, Physica D: Nonlinear Phenomena, 12:1-3 (1984), 32–44 | DOI | MR
[28] S. Z. Belen'kij, E. S. Fradkin, “Teoriia turbulentnogo peremeshivaniia”, Trudy Fizicheskogo instituta im. P.N. Lebedeva, 29 (1965), 207–241
[29] K. I. Read, “Experimental investigation for turbulent mixing by Rayleigh-Talor instability”, Physica D: Nonlinear Phenomena, 12:1-3 (1984), 45–58 | DOI
[30] Yu. A. Kucherenko, S. I. Balabin, N. N. Anuchina, V. I. Volkov, R. I. Ardashova, O. E. Kozel'kov, A. V. Dulov, L. A. Romanov, “Experimental investigation into periodic perturbation development against turbulent mixing about the contact boundary of heterodense liquids”, Proc. of 7th IWPCTM, 1999, 75–79
[31] A. N. Aleshin, E. V. Lazareva, S. G. Zaitsev, V. B. Rozanov, E. G. Gamalii, I. G. Lebo, “A study of linear, non-linear and transition stages of Richtmyer-Meshkov instability”, Doklady Mathematics, 35:2 (1990), 177–180
[32] Y. Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I”, Phys. Reports, 720-722 (2017), 1–136 | MR
[33] Y. Zhou, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II”, Phys. Reports, 723-725 (2017), 1–160 | MR
[34] G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. Mac-Neice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y. N. Young, M. Zingale, “A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration”, Phys. Fluids, 16 (2004), 1668–1693 | DOI
[35] B. Thornber, J. Griffond, O. Poujade, N. Attal, H. Varshochi, P. Bigdelou, P. Ramaprabhu, B. Olson, J. Greenough, Y. Zhou, O. Schilling, K. A. Garside, R. J.R. Williams, C. A. Batha, P. A. Kuchugov, M. E. Ladonkina, V. F. Tishkin, N. V. Zmitrenko, V. B. Rozanov, D. L. Youngs, “Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability: the $\theta$-group collaboration”, Phys. Fluids, 29 (2017), 105107 | DOI
[36] A. A. Tyaktev, A. V. Pavlenko, N. B. Anikin, Yu. A. Piskunov, I. L. Bugaenko, A. M. Andreev, S. S. Mokrushin, Eksperimentalnoe issledovanie kharakteristik zony turbulentnogo peremeshivaniia gazovykh sred, vyzvannoi deistviem neustoichivosti Releya-Tejlora, pri chislakh Atvuda 0.2 i 0.8, RFYAC-VNIITF, Snezhinsk, 2015
[37] J. W. Jacobs, M. A. Jones, C. E. Niederhaus, “Experimental Studies of Richtmyer-Meshkov Instability”, Proceedings of 5th IWPCTM, 1995, 195–202
[38] N. V. Nevmerzhickij, Gidrodinamicheskie neustoichivosti i turbulentnoe peremeshivanie veshchestv. Laboratornoe modelirovanie, ed. A. L. Mihajlov, FGUP-RFYAC-VNIIEF, Sarov, 2018, 246 pp.
[39] L. D. Landau, E. M. Lifschitz, Course of Theoretical Physics, v. VI, Fluid Mechanics, Pergamon Press, New York, 1987, 551 pp. | MR
[40] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorski, “Postroenie monotonnykh raznostnykh skhem povyshennogo poriadka approksimatsii dlia system uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 1:5 (1989), 95–120 | MR
[41] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorski, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlia zadachi o razvitii neustoichivosti Richtmyera-Meshkova”, Matem. modelirovanie, 7:5 (1995), 15–25 | MR
[42] I. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoiadernogo sinteza metodami matematicheskogo modelirovaniia, Fizmatlit, M., 2006, 304 pp.
[43] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR
[44] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR
[45] Yu. V. YAnilkin, S. P. Belyaev, Yu. A. Bondarenko, E. S. Gavrilova, E. A. Goncharov, A. D. Gorbenko, A. V. Gorodnichev, E. V. Gubkov, A. R. Guzhova, L. I. Degtyarenko, G. V. Zharo-va, V. Yu. Kolobyanin, V. N. Sofronov, A. L. Stadnik, N. A. Hovrin, O. N. Chernyshova, I. N. Chistyakova, V. N. Shemyakov, “Eilerovy chislennye metodiki EGAK i TREK dlia modelirovaniia mnogomernykh techenii mnogokomponentnoi sredy”, Trudy RFYAC-VNIIEF, 12 (2008), 54–65
[46] Yu. V. Yanilkin, “Chislennoe issledovanie vzaimodeistviia zony turbulentnogo peremeshivaniia i lokalnykh vozmushchenii granitsy razdela v zadache gravitatsionnogo turbulentnogo peremeshivaniia”, VANT, ser. Matem. Modelir. fizicheskikh protsessov, 3 (2019), 3–18
[47] V. P. Stacenko, Yu. V. Yanilkin, O. G. Sin'kova, A. L. Stadnik, “Stepen gomogennogo smesheniia po rezultatam 3D chislennykh raschetov gravitatsionnogo turbulentnogo peremeshivaniia”, VANT, ser. Teoreticheskaia i prikladnaia fizika, 2–3 (2007), 32–40