Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_1_a3, author = {D. A. Borzykh and A. A. Yazykov}, title = {Structural break detection in autoregressional conditional heteroskedasticity model: case of {Student} distribution}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {51--58}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a3/} }
TY - JOUR AU - D. A. Borzykh AU - A. A. Yazykov TI - Structural break detection in autoregressional conditional heteroskedasticity model: case of Student distribution JO - Matematičeskoe modelirovanie PY - 2023 SP - 51 EP - 58 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a3/ LA - ru ID - MM_2023_35_1_a3 ER -
%0 Journal Article %A D. A. Borzykh %A A. A. Yazykov %T Structural break detection in autoregressional conditional heteroskedasticity model: case of Student distribution %J Matematičeskoe modelirovanie %D 2023 %P 51-58 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a3/ %G ru %F MM_2023_35_1_a3
D. A. Borzykh; A. A. Yazykov. Structural break detection in autoregressional conditional heteroskedasticity model: case of Student distribution. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a3/
[1] D. Borzykh, A. Yazykov, “The new KS method for a structural break detection in GARCH (1,1) models”, Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), 54 (2019), 90–104
[2] P. Kokoszka, R. Leipus, “Testing for parameter changes in ARCH models”, Lithuanian Mathematical Journal, 39 (1999), 182–195 | DOI | MR
[3] T. Bollerslev, “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return”, The Review of Economics and Statistics, 69 (1987), 542–547 | DOI
[4] R. Davis, T. Lee, G. Rodriguez-Yam, “Break detection for a class of nonlinear time series models”, Journal of Time Series Analysis, 29 (2008), 834–867 | DOI | MR
[5] K. Fukuda, “Parameter changes in GARCH model”, J. of Applied Statistics, 37 (2010), 1123–1135 | DOI | MR
[6] S. Kim, S. Cho, S. Lee, “On the CUSUM test for parameter changes in GARCH(1,1) models”, Communications in Statistics. Theory and Methods, 29 (2000), 445–462 | DOI | MR
[7] P. Kokoszka, R. Leipus, “Change-point estimation in ARCH models”, Bernoulli, 6 (2000), 513–539 | DOI | MR
[8] S. Lee, Y. Tokutsu, K. Maekawa, “The CUSUM test for parameter change in regression models with ARCH errors”, J. of the Japanese Statistical Society, 34 (2004), 173–188 | DOI | MR
[9] C. Inclán, G. Tiao, “Use of cumulative sums of squares for retrospective detection of changes of variance”, J. of the American Statis. Association, 89 (1994), 913–923 | MR
[10] H. Ombao, J. Raz, R. von Sachs, W. Guo, “The SLEX model of a non-stationary random process”, Annals of the Institute of Statistical Mathematics, 54 (2002), 171–200 | DOI | MR
[11] G. J. Ross, “Modeling financial volatility in the presence of abrupt changes”, Physica A: Statistical Mechanics and its Applications, 192:2 (2013), 350–360 | DOI
[12] A. Zhang, R. Gabrys, P. Kokoszka, “Discriminating between long memory and volatility shifts”, Austrian Journal of Statistics, 36:4 (2007), 253–275 | MR
[13] I. Berkes, E. Gombay, L. Horváth, P. Kokoszka, “Sequential change-point detection in GARCH (p, q) models”, Econometric theory, 20:6 (2004), 1140–1167 | DOI | MR