Coupled prediction of flows in domains containing a porous medium and free stream
Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 34-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with a model for coupled predictions of flows in domains containing a fluid–saturated porous medium and free stream. The model is based on the generalized Navier–Stokes equations for an incompressible fluid, obtained by averaging over a representative elementary volume of the porous medium and written for the entire computational domain, consisting of two subdomains differing in its properties. To implement numerically this model, we have developed a computational algorithm based on the finite element method and Newton's method for solving nonlinear equations. It was implemented using the open computational platform FEniCS. The verification of the developed numerical technique was conducted on the known numerical results of other authors. In addition, model predictions of flows in an automobile catalytic converter were performed and discussed.
Keywords: volume–averaged Navier–Stokes equations, Finite Element Method, Newton’s method, FEniCS platform.
@article{MM_2023_35_1_a2,
     author = {A. G. Churbanov and N. G. Churbanova and M. A. Trapeznikova},
     title = {Coupled prediction of flows in domains containing a porous medium and free stream},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {34--50},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a2/}
}
TY  - JOUR
AU  - A. G. Churbanov
AU  - N. G. Churbanova
AU  - M. A. Trapeznikova
TI  - Coupled prediction of flows in domains containing a porous medium and free stream
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 34
EP  - 50
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a2/
LA  - ru
ID  - MM_2023_35_1_a2
ER  - 
%0 Journal Article
%A A. G. Churbanov
%A N. G. Churbanova
%A M. A. Trapeznikova
%T Coupled prediction of flows in domains containing a porous medium and free stream
%J Matematičeskoe modelirovanie
%D 2023
%P 34-50
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a2/
%G ru
%F MM_2023_35_1_a2
A. G. Churbanov; N. G. Churbanova; M. A. Trapeznikova. Coupled prediction of flows in domains containing a porous medium and free stream. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 34-50. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a2/

[1] A. Bejan, I. Dincer, S. Lorente, A. F. Miguel, A. H. Reis, Porous and Complex Flow Structures in Modern Technologies, Springer Science + Business Media, NY, 2004, 396 pp.

[2] K. Vafai (ed.), Handbook of Porous Media, 3rd ed., CRC Press, Boca Raton, FL, 2015, 922 pp.

[3] M. K. Das, P. P. Mukherjee, K. Muralidhar, Modeling Transport Phenomena in Porous Media with Applications, Springer Int. Publishing AG, Cham, Switzerland, 2018, 241 pp. | MR

[4] R. Helmig, B. Flemisch, M. Wolff, B. Faigle, “Efficient Modeling of Flow and Transport in Porous Media Using Multi-Physics and Multi-Scale Approaches”, Handbook of Geomathematics, 2nd ed, eds. W. Freeden, M.Z. Nashed, T. Sonar, Springer-Verlag, Berlin, 2015, 703–749, 3170 pp. | DOI

[5] H. P.G. Darcy, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont Editeur, Paris, 1856

[6] H. C. Brinkman, “A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles”, Appl. Sci. Res., Ser. A, 1:1 (1947), 27–34 | DOI

[7] P. Forchheimer, “Wasserbewegung durch Boden”, Z. Ver. Deutsch. Ing, 45:50 (1901), 1782–1788

[8] S. Whitaker, The Method of Volume Averaging, Springer Science + Business Media, Dordrecht, Netherlands, 1999, 219 pp.

[9] M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd ed., Springer Science Business Media, NY, 2012, 709 pp.

[10] D. A. Nield, A. Bejan, Convection in Porous Media, 5th ed., Springer Int. Publishing AG, Cham, Switzerland, 2017, 988 pp. | MR

[11] M. Nazari, Y. Mahmoudi, K. Hooman, “Introduction to Fluid Flow and Heat Transfer in Porous Media”, Convective Heat Transfer in Porous Media, eds. Y. Mahmoudi, K. Hooman, K. Vafai, CRC Press, Boca Raton, FL, 2020, 3–18, 381 pp.

[12] B. Goyeau, D. Lhuillier, D. Gobin, M. G. Velarde, “Momentum transport at fluid-porous interface”, Int. J. Heat Mass Transfer, 46:21 (2003), 4071–4081 | DOI

[13] D. Gobin, B. Goyeau, “Natural convection in partially porous media: a brief overview”, Int. J. Numer. Methods Heat Fluid Flow, 18:3-4 (2008), 465–490 | DOI | MR

[14] M. Ehrhardt, J. Fuhrmann, E. Holzbecher, A. Linke, Mathematical Modeling of Channel-Porous Layer Interfaces in PEM Fuel Cells, WIAS Preprint, No 1375, Berlin, 2008, 8 pp.

[15] M. Discacciati, “Coupling Free and Porous-Media Flows: Models and Numerical Approximation”, Simulation of Flow in Porous Media: Applications in Energy and Environment, eds. P. Bastian, J. Kraus, R. Scheichl, M. Wheeler, de Gruyter, Berlin, 2013, 107–138, 213 pp. | DOI | MR

[16] P. Angot, B. Goyeau, J. A. Ochoa-Tapia, “Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions”, Physical Review E, 95 (2017), 063302, 16 pp. | DOI | MR

[17] E. Eggenweiler, I. Rybak, “Unsuitability of the Beavers-Joseph interface condition for filtration problems”, J. Fluid Mech., 892:A10 (2020), 19 pp. | MR

[18] I. Rybak, C. Schwarzmeier, E. Eggenweiler, U. Rude, “Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models”, Computational Geosciences, 25:2 (2021), 621–635 | DOI | MR

[19] B. Alazmi, K. Vafai, “Analysis of variants within the porous media transport models”, ASME J. Heat Transfer, 122:2 (2000), 303–326 | DOI

[20] C. T. Hsu, P. Cheng, “Thermal dispersion in a porous medium”, Int. J. Heat Mass Transfer, 33:8 (1990), 1587–1597 | DOI

[21] M. J.S. de Lemos, Turbulence in Porous Media: Modeling and Applications, 2nd ed, Elsevier, London, 2012, 371 pp.

[22] FEniCS Project, (data obrascheniya: 22.09.2022) https://fenicsproject.org/

[23] A. Logg, K. A. Mardal, G.N. Wells (eds.), Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Springer-Verlag, Berlin, 2012, 723 pp. | MR

[24] R. Glowinski, “Finite Element Methods for Incompressible Viscous Flow”, Handbook of Numerical Analysis, IX, eds. P.G. Ciarlet, J.L. Lions, Elsevier Science B.V., Amsterdam, 2003, 3–1176, 1176 pp. | MR

[25] V. John, Finite Element Methods for Incompressible Flow Problems, Springer Int. Publishing AG, Cham, Switzerland, 2016, 812 pp. | MR

[26] MUMPS: MUltifrontal Massively Parallel sparse direct Solver, (data obrascheniya: 22.09.2022) http://mumps.enseeiht.fr/

[27] Gmsh, (data obrascheniya: 22.09.2022) https://gmsh.info/

[28] ParaView, (data obrascheniya: 22.09.2022) https://www.paraview.org/

[29] D. K. Garthling, C. E. Hickox, R. C. Givler, “Simulation of coupled viscous and porous flow problems”, Int. J. Computational Fluid Dynamics, 7:1-2 (1996), 23–48 | DOI

[30] V. A. F. Costa, L. A. Oliveira, B. R. Baliga, A. C.M. Sousa, “Simulation of coupled flows in adjacent porous and open domains using a control-volume finite-element method”, Numer. Heat Transfer, Part A: Appl., 45:7 (2004), 675–697 | DOI

[31] L. Betchen, A. G. Straatman, B. E. Thompson, “A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains”, Numer. Heat Transfer, Part A: Appl., 49:6 (2006), 543–565 | DOI

[32] M. Nordlund, M. Stanic, A. K. Kuczaj, E. M.A. Frederix, B. J. Geurts, “Improved PISO algorithms for modeling density varying flow in conjugate fluid-porous domains”, J. Comput. Physics, 306 (2016), 199–215 | DOI | MR

[33] A. S. Kozelkov, S. V. Lashkin, V. R. Efremov, K. N. Volkov, Yu. A. Tsibereva, “An implicit algorithm for solving Navier-Stokes equations to simulate flows in anisotropic porous media”, Computers Fluids, 160 (2018), 164–174 | DOI | MR

[34] Z. Li, H. Zhang, Y. Liu, J. M. McDonough, “Implementation of compressible porous-fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow”, Applied Mathematics and Computation, 364 (2020), 124682, 19 pp. | DOI | MR

[35] R. E. Hayes, A. Fadic, J. Mmbaga, A. Najafi, “CFD modelling of the automotive catalytic converter”, Catalysis Today, 188:1 (2012), 94–105 | DOI

[36] S. Porter, J. Saul, S. Aleksandrova, H. Medina, S. Benjamin, “Hybrid flow modelling approach applied to automotive catalysts”, Applied Mathematical Modelling, 40:19-20 (2016), 8435–8445 | DOI

[37] H. A. Ibrahim, W. H. Ahmed, S. Abdou, V. Blagojevic, “Experimental and numerical investigations of flow through catalytic converters”, Int. J. Heat Mass Transfer, 127 (2018), 546–560 | DOI

[38] M. Hettel, E. Daymo, T. Schmidt, O. Deutschmann, “CFD-Modeling of fluid domains with embedded monoliths with emphasis on automotive converters”, Chemical Engineering Processing: Process Intensification, 147 (2020), 107728, 14 pp. | DOI