Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel
Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 13-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary and unstable pulsating flows of ionizing hydrogen in the channel of quasistationary plasma accelerator are considered. Numerical studies of two-dimensional axisymmetric flows were carried out on the basis of the modified MHD equations in the approximation of local thermodynamic equilibrium, taking into account electrical conductivity, thermal conductivity, and radiation transport. The generalization of the calculation results led to the formulation of the empirical condition for the stationarity of twodimensional flows of ionizing gas.
Keywords: ionizing gas flows, equations of magnetic gas dynamics, flow stationarity condition, plasma accelerator.
@article{MM_2023_35_1_a1,
     author = {A. N. Kozlov and V. S. Konovalov},
     title = {Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {13--33},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/}
}
TY  - JOUR
AU  - A. N. Kozlov
AU  - V. S. Konovalov
TI  - Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 13
EP  - 33
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/
LA  - ru
ID  - MM_2023_35_1_a1
ER  - 
%0 Journal Article
%A A. N. Kozlov
%A V. S. Konovalov
%T Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel
%J Matematičeskoe modelirovanie
%D 2023
%P 13-33
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/
%G ru
%F MM_2023_35_1_a1
A. N. Kozlov; V. S. Konovalov. Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 13-33. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/

[1] S. I. Braginsky, “Transport processes in a plasma”, v. 1, Reviews of Plasma Physics, Consultants Bureau, NY, 1965, 201–292 | MR

[2] Y. B. Zel'dovich, Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Dover Publication Inc., Mineola, NY, 2002

[3] N. A. Krall, A. W. Trivelpiece, “Principles of plasma physics”, McGraw-Hill, NY, 1978

[4] A. I. Morozov, Vvedenie v plazmodinamiku, Fizmatlit, M., 2008, 613 pp.

[5] A. I. Morozov, “Principles of coaxial (quasi) stationary plasma accelerators (QSPA)”, Sov. J. Plasma Phys., 16 (1990), 63–78

[6] N. Klimov, V. Podkovyrov, A. Zhitlukhin, D. Kovalenko et al, “Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA”, Journal of Nuclear Materials, 390-391 (2009), 721–726 | DOI

[7] A. N. Kozlov, S. P. Drukarenko, N. S. Klimov, A. A. Moskacheva, V. L. Podkovyrov, “The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field”, Problems of Atomic Science and Technology. Series: Plasma Physics, 2009, no. 1, 92–94

[8] N. S. Klimov, D. V. Kovalenko, V. L. Podkovyrov, D. M. Kochnev, A. D. Yaroshevskaya, R. V. Urlova, A. N. Kozlov, V. S. Konovalov, “Experimental study of integrated characteristics of plasma stream and discharge of a quasi-stationary high-current plasma accelerator with its own magnetic field”, Problems of Atomic Science and Technology. Series: Thermonuclear fusion, 42:3 (2019), 52–63

[9] V. I. Tereshin, A. N. Bandura, O. V. Byrka, V. V. Chebotarev, I. E. Garkusha, I. Landman, V. A. Makhlaj, I. M. Neklyudov, D. G. Solyakov, A. V. Tsarenko, “Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces”, Plasma Phys. Contr. Fusion, 49 (2007), A231–A239 | DOI

[10] I. E. Garkusha, V. V. Chebotarev, S. S. Herashchenko, V. A. Makhlaj et al, “Novel test-bed facility for PSI issues in fusion reactor conditions on the base of next generation QSPA plasma accelerator”, Nuclear Fusion, 57:11 (2017), 116011 | DOI

[11] I. E. Garkusha, D. G. Solyakov, V. V. Chebotarev, V. A. Makhlaj, N. V. Kulik, “Experimental studies of high-energy quasi-steady plasma streams generated by a magnetoplasma analogue of the Laval nozzle in the compression and acceleration regimes”, Plasma Physics Reports, 45:2 (2019), 166–178 | DOI

[12] V. M. Astashynski, S. I. Ananin et al, “Materials surface modification using quasi-stationary plasma accelerators”, J. Surface and Coating Technology, 180-181 (2004), 392–395 | DOI

[13] K. V. Brushlinskii, A. I. Morozov, “Calculation of two-dimensional plasma channel flows”, Reviews of Plasma Physics, 8, Consultants Bureau, NY, 1980, 105–198 | DOI | MR

[14] K. V. Brushlinskii, A. M. Zaborov, A. N. Kozlov, A. I. Morozov, V. V. Savelyev, “Numerical simulation of plasma flows in the QSPA”, Sov. J. Plasma Phys., 16 (1990), 79–89

[15] A. N. Kozlov, V. S. Konovalov, “Numerical study of the ionization process and radiation transport in the channel of plasma accelerator”, Communications in Nonlinear Science and Numerical Simulation (CNSNS), 51 (2017), 169–179 | DOI

[16] L. M. Biberman, V. S. Vorobev, I. T. Yakubov, Kinetika of neravnovesnoi nizkotemperatyrnoi plazmy, Nauka, M., 1982, 375 pp.

[17] A. N. Kozlov, “Ionization and recombination kinetics in a plasma accelerator channel”, Fluid Dynamics, 35 (2000), 784–790 | DOI

[18] A. A. Barmin, A. N. Kozlov, “Structure of a steady-state ionization front in the plasma accelerator channel”, Fluid Dynamics, 48 (2013), 556–566 | DOI | MR

[19] A. N. Kozlov, I. E. Garkusha, V. S. Konovalov, V. G. Novikov, “The radiation intensity of the Lyman alpha line at the ionization front in the quasi-steady plasma accelerator”, Problems of Atomic Science and Technology. Series: Plasma Physics, 2013, no. 1, 128–130

[20] A. I. Morozov, L. S. Solovyev, “Stationary plasma flows in magnetic field”, Reviews of Plasma Physics, 8, Consultants Bureau, NY, 1980, 3–104

[21] K. V. Brushlinskii, Mathematical Foundations of Liquid, Gas, and Plasma Computational Mechanics, Intellekt, Dolgoprudnyi, 2017

[22] A. N. Kozlov, “Influence of a longitudinal magnetic field on the Hall effect in the plasma accelerator channel”, Fluid Dynamics, 38 (2003), 653–661 | DOI | MR

[23] A. N. Kozlov, “Dynamics of rotating flows in plasma accelerator channels with a longitudinal magnetic field”, Plasma Physics Reports, 32 (2006), 378–387 | DOI

[24] A. N. Kozlov, “Basis of the quasi-steady plasma accelerator theory in the presence of a longitudinal magnetic field”, J. Plasma Physics, 74:2 (2008), 261–286 | DOI

[25] K. V. Brushlinskii, N. S. Zhdanova, E. V. Stepin, “Acceleration of plasma in coaxial channels with preshaped electrodes and longitudinal magnetic field”, Computational Mathematics and Mathematical Physics, 44:4 (2018), 593–603 | DOI | MR

[26] A. N. Kozlov, “Two-fluid magneto hydrodynamic model of plasma flows in a quasi-steady-state plasma accelerator with a longitudinal magnetic field”, Journal of Applied Mechanics and Technical Physics, 50:3 (2009), 396–405 | DOI

[27] A. N. Kozlov, “Study of the near-electrode processes in quasi-steady plasma accelerators with impenetrable electrodes”, Plasma Physics Reports, 38 (2012), 12–21 | DOI

[28] A. N. Kozlov, “The study of plasma flows in accelerators with thermonuclear parameters”, Plasma Physics and Controlled Fusion, 59:11 (2017), 115004 | DOI

[29] A. I. Morozov, A. N. Kozlov, “Self-cleaning effect of hydrogen plasma flow in the QSPA accelerator”, Phys. of Extreme States of Matter, eds. V.E. Fortov et al., IPKhF RAN, Chernogolovka, 2007, 316–319

[30] K. V. Brushlinskii, A. N. Kozlov, V. S. Konovalov, “Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels”, J. Comp. Math. Math. Phys., 55:8 (2015), 1370–1380 | DOI | MR

[31] D. Mihalas, Stellar atmospheres, W. H. Freeman, San Francisco, 1978

[32] B. N. Chetverushkin, “Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza”, Nauka, M., 1985

[33] J. I. Castor, Lectures on radiation hydrodynamics, Lawrence Livermore National Laboratory, Livermore, 2000

[34] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-statistical models of hot dense matter. Methods for computation opacity and equation of state, Birkhauser Verlag, Basel, Switzerland, 2005 | MR

[35] R. Siegel, J. R. Howell, Thermal radiation heat transfer, New York, 1972

[36] E. S. Oran, J. P. Boris, Numerical simulation of reactive flow, Elsevier, NY, 1987 | MR

[37] L. M. Degtyarev, F. P. Favorskii, “Flow variant of the sweep method for difference problems with strongly varying coefficients”, Sov. J. Comp. Math. Math. Phys., 9 (1969), 285–294 | DOI | MR

[38] V. I. Lebedev, “About quadratures on the sphere”, Sov. J. Comp. Math. Math. Phys., 16:2 (1976), 10–24 | DOI | MR

[39] B. N. Chetverushkin, O. G. Olkhovskaya, V. A. Gasilov, “Solution of the radiative transfer equ?ation on parallel computer systems”, Doklady Mathematics, 92:2 (2015), 528–531 | DOI | MR

[40] B. A. Gasilov i dr., “Paket prikladnykh programm MARPLE3D dlia modelirovaniia na vysokoproizvoditelnykh EVM impulsnoi magnitouskorennoi plazmy”, Matematicheskoe modelirovanie, 24:1 (2012), 55–87

[41] O. Olkhovskaya, A. Kotelnikov, M. Yakobovskiy, V. Gasilov, “Parallel Ray Tracing Algorithm for Numerical Analysis in Radiative Media Physics”, Series: Advances in Parallel Computing. Ebook, 32 (2018), 137–146