Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_1_a1, author = {A. N. Kozlov and V. S. Konovalov}, title = {Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {13--33}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/} }
TY - JOUR AU - A. N. Kozlov AU - V. S. Konovalov TI - Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel JO - Matematičeskoe modelirovanie PY - 2023 SP - 13 EP - 33 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/ LA - ru ID - MM_2023_35_1_a1 ER -
%0 Journal Article %A A. N. Kozlov %A V. S. Konovalov %T Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel %J Matematičeskoe modelirovanie %D 2023 %P 13-33 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/ %G ru %F MM_2023_35_1_a1
A. N. Kozlov; V. S. Konovalov. Empirical stationary condition of two-dimensional flows of ionizing hydrogen in the plasma accelerator channel. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 13-33. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a1/
[1] S. I. Braginsky, “Transport processes in a plasma”, v. 1, Reviews of Plasma Physics, Consultants Bureau, NY, 1965, 201–292 | MR
[2] Y. B. Zel'dovich, Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Dover Publication Inc., Mineola, NY, 2002
[3] N. A. Krall, A. W. Trivelpiece, “Principles of plasma physics”, McGraw-Hill, NY, 1978
[4] A. I. Morozov, Vvedenie v plazmodinamiku, Fizmatlit, M., 2008, 613 pp.
[5] A. I. Morozov, “Principles of coaxial (quasi) stationary plasma accelerators (QSPA)”, Sov. J. Plasma Phys., 16 (1990), 63–78
[6] N. Klimov, V. Podkovyrov, A. Zhitlukhin, D. Kovalenko et al, “Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA”, Journal of Nuclear Materials, 390-391 (2009), 721–726 | DOI
[7] A. N. Kozlov, S. P. Drukarenko, N. S. Klimov, A. A. Moskacheva, V. L. Podkovyrov, “The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field”, Problems of Atomic Science and Technology. Series: Plasma Physics, 2009, no. 1, 92–94
[8] N. S. Klimov, D. V. Kovalenko, V. L. Podkovyrov, D. M. Kochnev, A. D. Yaroshevskaya, R. V. Urlova, A. N. Kozlov, V. S. Konovalov, “Experimental study of integrated characteristics of plasma stream and discharge of a quasi-stationary high-current plasma accelerator with its own magnetic field”, Problems of Atomic Science and Technology. Series: Thermonuclear fusion, 42:3 (2019), 52–63
[9] V. I. Tereshin, A. N. Bandura, O. V. Byrka, V. V. Chebotarev, I. E. Garkusha, I. Landman, V. A. Makhlaj, I. M. Neklyudov, D. G. Solyakov, A. V. Tsarenko, “Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces”, Plasma Phys. Contr. Fusion, 49 (2007), A231–A239 | DOI
[10] I. E. Garkusha, V. V. Chebotarev, S. S. Herashchenko, V. A. Makhlaj et al, “Novel test-bed facility for PSI issues in fusion reactor conditions on the base of next generation QSPA plasma accelerator”, Nuclear Fusion, 57:11 (2017), 116011 | DOI
[11] I. E. Garkusha, D. G. Solyakov, V. V. Chebotarev, V. A. Makhlaj, N. V. Kulik, “Experimental studies of high-energy quasi-steady plasma streams generated by a magnetoplasma analogue of the Laval nozzle in the compression and acceleration regimes”, Plasma Physics Reports, 45:2 (2019), 166–178 | DOI
[12] V. M. Astashynski, S. I. Ananin et al, “Materials surface modification using quasi-stationary plasma accelerators”, J. Surface and Coating Technology, 180-181 (2004), 392–395 | DOI
[13] K. V. Brushlinskii, A. I. Morozov, “Calculation of two-dimensional plasma channel flows”, Reviews of Plasma Physics, 8, Consultants Bureau, NY, 1980, 105–198 | DOI | MR
[14] K. V. Brushlinskii, A. M. Zaborov, A. N. Kozlov, A. I. Morozov, V. V. Savelyev, “Numerical simulation of plasma flows in the QSPA”, Sov. J. Plasma Phys., 16 (1990), 79–89
[15] A. N. Kozlov, V. S. Konovalov, “Numerical study of the ionization process and radiation transport in the channel of plasma accelerator”, Communications in Nonlinear Science and Numerical Simulation (CNSNS), 51 (2017), 169–179 | DOI
[16] L. M. Biberman, V. S. Vorobev, I. T. Yakubov, Kinetika of neravnovesnoi nizkotemperatyrnoi plazmy, Nauka, M., 1982, 375 pp.
[17] A. N. Kozlov, “Ionization and recombination kinetics in a plasma accelerator channel”, Fluid Dynamics, 35 (2000), 784–790 | DOI
[18] A. A. Barmin, A. N. Kozlov, “Structure of a steady-state ionization front in the plasma accelerator channel”, Fluid Dynamics, 48 (2013), 556–566 | DOI | MR
[19] A. N. Kozlov, I. E. Garkusha, V. S. Konovalov, V. G. Novikov, “The radiation intensity of the Lyman alpha line at the ionization front in the quasi-steady plasma accelerator”, Problems of Atomic Science and Technology. Series: Plasma Physics, 2013, no. 1, 128–130
[20] A. I. Morozov, L. S. Solovyev, “Stationary plasma flows in magnetic field”, Reviews of Plasma Physics, 8, Consultants Bureau, NY, 1980, 3–104
[21] K. V. Brushlinskii, Mathematical Foundations of Liquid, Gas, and Plasma Computational Mechanics, Intellekt, Dolgoprudnyi, 2017
[22] A. N. Kozlov, “Influence of a longitudinal magnetic field on the Hall effect in the plasma accelerator channel”, Fluid Dynamics, 38 (2003), 653–661 | DOI | MR
[23] A. N. Kozlov, “Dynamics of rotating flows in plasma accelerator channels with a longitudinal magnetic field”, Plasma Physics Reports, 32 (2006), 378–387 | DOI
[24] A. N. Kozlov, “Basis of the quasi-steady plasma accelerator theory in the presence of a longitudinal magnetic field”, J. Plasma Physics, 74:2 (2008), 261–286 | DOI
[25] K. V. Brushlinskii, N. S. Zhdanova, E. V. Stepin, “Acceleration of plasma in coaxial channels with preshaped electrodes and longitudinal magnetic field”, Computational Mathematics and Mathematical Physics, 44:4 (2018), 593–603 | DOI | MR
[26] A. N. Kozlov, “Two-fluid magneto hydrodynamic model of plasma flows in a quasi-steady-state plasma accelerator with a longitudinal magnetic field”, Journal of Applied Mechanics and Technical Physics, 50:3 (2009), 396–405 | DOI
[27] A. N. Kozlov, “Study of the near-electrode processes in quasi-steady plasma accelerators with impenetrable electrodes”, Plasma Physics Reports, 38 (2012), 12–21 | DOI
[28] A. N. Kozlov, “The study of plasma flows in accelerators with thermonuclear parameters”, Plasma Physics and Controlled Fusion, 59:11 (2017), 115004 | DOI
[29] A. I. Morozov, A. N. Kozlov, “Self-cleaning effect of hydrogen plasma flow in the QSPA accelerator”, Phys. of Extreme States of Matter, eds. V.E. Fortov et al., IPKhF RAN, Chernogolovka, 2007, 316–319
[30] K. V. Brushlinskii, A. N. Kozlov, V. S. Konovalov, “Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels”, J. Comp. Math. Math. Phys., 55:8 (2015), 1370–1380 | DOI | MR
[31] D. Mihalas, Stellar atmospheres, W. H. Freeman, San Francisco, 1978
[32] B. N. Chetverushkin, “Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza”, Nauka, M., 1985
[33] J. I. Castor, Lectures on radiation hydrodynamics, Lawrence Livermore National Laboratory, Livermore, 2000
[34] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-statistical models of hot dense matter. Methods for computation opacity and equation of state, Birkhauser Verlag, Basel, Switzerland, 2005 | MR
[35] R. Siegel, J. R. Howell, Thermal radiation heat transfer, New York, 1972
[36] E. S. Oran, J. P. Boris, Numerical simulation of reactive flow, Elsevier, NY, 1987 | MR
[37] L. M. Degtyarev, F. P. Favorskii, “Flow variant of the sweep method for difference problems with strongly varying coefficients”, Sov. J. Comp. Math. Math. Phys., 9 (1969), 285–294 | DOI | MR
[38] V. I. Lebedev, “About quadratures on the sphere”, Sov. J. Comp. Math. Math. Phys., 16:2 (1976), 10–24 | DOI | MR
[39] B. N. Chetverushkin, O. G. Olkhovskaya, V. A. Gasilov, “Solution of the radiative transfer equ?ation on parallel computer systems”, Doklady Mathematics, 92:2 (2015), 528–531 | DOI | MR
[40] B. A. Gasilov i dr., “Paket prikladnykh programm MARPLE3D dlia modelirovaniia na vysokoproizvoditelnykh EVM impulsnoi magnitouskorennoi plazmy”, Matematicheskoe modelirovanie, 24:1 (2012), 55–87
[41] O. Olkhovskaya, A. Kotelnikov, M. Yakobovskiy, V. Gasilov, “Parallel Ray Tracing Algorithm for Numerical Analysis in Radiative Media Physics”, Series: Advances in Parallel Computing. Ebook, 32 (2018), 137–146