On the density distribution of a plasma generated by a femtosecond laser prepulse
Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the results of computational experiments concerning the expansion of a plasma generated by laser radiation at the stage of a nanosecond "prepulse" ahead of the main femtosecond-range pulse. A series of plasmodynamic calculations has been performed for various laser target materials. It is shown that, within the framework of the considered problem statement, which corresponds to typical conditions of full-scale experiments, the distribution of the laser plasma density as a whole is satisfactorily approximated by a simple three-parameter formula.
Keywords: laser plasma, femtosecond laser pulse, plasmodynamic model.
@article{MM_2023_35_1_a0,
     author = {I. P. Tsygvintsev and V. A. Gasilov},
     title = {On the density distribution of a plasma generated by a femtosecond laser prepulse},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a0/}
}
TY  - JOUR
AU  - I. P. Tsygvintsev
AU  - V. A. Gasilov
TI  - On the density distribution of a plasma generated by a femtosecond laser prepulse
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 3
EP  - 12
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a0/
LA  - ru
ID  - MM_2023_35_1_a0
ER  - 
%0 Journal Article
%A I. P. Tsygvintsev
%A V. A. Gasilov
%T On the density distribution of a plasma generated by a femtosecond laser prepulse
%J Matematičeskoe modelirovanie
%D 2023
%P 3-12
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_1_a0/
%G ru
%F MM_2023_35_1_a0
I. P. Tsygvintsev; V. A. Gasilov. On the density distribution of a plasma generated by a femtosecond laser prepulse. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a0/

[1] D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses”, Opt. Commun., 56 (1985), 219–221 | DOI

[2] T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, T. Tajima, “Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime”, Phys. Rev. Lett., 92 (2004), 175003 | DOI

[3] P. Hadjisolomou, I. P. Tsygvintsev, P. Sasorov, V. Gasilov, G. Korn, S. V. Bulanov, “Preplasma effects on laser ion generation from thin foil targets”, Phys. Plasmas, 27 (2020), 013107 | DOI

[4] C. Liu, V. Tripathi, B. Eliasson, High-Power Laser-Plasma Interaction, first edition, Cambridge University Press, 2019

[5] R. A. Shanny, D. A. Tidman, “Field-generating thermal instability in laser-heated plasmas”, The Physics of Fluids, 17:6 (1974), 1207 | DOI

[6] D. A. Tidman, “Strong magnetic fields produced by composition discontinuities in laser-produced plasmas”, Phys. Rev., 32:21 (1974), 1179

[7] A. Yu. Krukovskiy, V. G. Novikov, I. P. Tsygvintsev, “3D simulation of the impact made by a noncentral laser pulse on a spherical tin target”, Mathematical Models and Computer Simulations, 9:1 (2017), 48–59 | DOI | MR

[8] St. Faik, A. Tauschwitz, I. Iosilevskiy, “The equation of state package FEOS for high energy density matter”, Computer Physics Communications, 227 (2018), 117–125 | DOI

[9] A. J. Kemp, J. Meyer ter Vehn, “An equation of state code for hot dense matter, based on the QEOS description”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 415:3 (1998), 674–676 | DOI

[10] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, “Quantum-statistical models of hot dense matter”, Methods for computation opacity and equation of state, Birkhäuser, Switzerland, 2005 | MR

[11] M. Born, E. Wolf, Principles of Optics, sixth edition, Pergamon, 1980 | MR

[12] T. B. Kaiser, “Laser ray tracing and power deposition on an unstructured three-dimensional grid”, Physical Review E, 61:1 (2000), 895–905 | DOI

[13] M. M. Basko, I. P. Tsygvintsev, “A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals”, Computer Physics Communications, 214 (2017), 59–70 | DOI | MR

[14] P. Tsygvintsev, A. Yu. Krukovskiy, V. A. Gasilov, V. G. Novikov, I. V. Popov, “Mesh-ray model and method for calculating the laser radiation absorption”, Mathematical Models and Computer Simulations, 8:4 (2016), 382–390 | DOI

[15] V. Romanov, I. P. Tsygvintsev, V. L. Paperny, A. A. Kologrivov, Yu. V. Korobkin, A. Yu. Krukovskiy, A. A. Rupasov, “Influence of the laser plasma-expansion specific on a cathode jet formation and the current stability in a laser-ignited vacuum discharge”, Physics of Plasmas, 25:8 (2018), 083107 | DOI