Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_1_a0, author = {I. P. Tsygvintsev and V. A. Gasilov}, title = {On the density distribution of a plasma generated by a femtosecond laser prepulse}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--12}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_1_a0/} }
TY - JOUR AU - I. P. Tsygvintsev AU - V. A. Gasilov TI - On the density distribution of a plasma generated by a femtosecond laser prepulse JO - Matematičeskoe modelirovanie PY - 2023 SP - 3 EP - 12 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_1_a0/ LA - ru ID - MM_2023_35_1_a0 ER -
I. P. Tsygvintsev; V. A. Gasilov. On the density distribution of a plasma generated by a femtosecond laser prepulse. Matematičeskoe modelirovanie, Tome 35 (2023) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2023_35_1_a0/
[1] D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses”, Opt. Commun., 56 (1985), 219–221 | DOI
[2] T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, T. Tajima, “Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime”, Phys. Rev. Lett., 92 (2004), 175003 | DOI
[3] P. Hadjisolomou, I. P. Tsygvintsev, P. Sasorov, V. Gasilov, G. Korn, S. V. Bulanov, “Preplasma effects on laser ion generation from thin foil targets”, Phys. Plasmas, 27 (2020), 013107 | DOI
[4] C. Liu, V. Tripathi, B. Eliasson, High-Power Laser-Plasma Interaction, first edition, Cambridge University Press, 2019
[5] R. A. Shanny, D. A. Tidman, “Field-generating thermal instability in laser-heated plasmas”, The Physics of Fluids, 17:6 (1974), 1207 | DOI
[6] D. A. Tidman, “Strong magnetic fields produced by composition discontinuities in laser-produced plasmas”, Phys. Rev., 32:21 (1974), 1179
[7] A. Yu. Krukovskiy, V. G. Novikov, I. P. Tsygvintsev, “3D simulation of the impact made by a noncentral laser pulse on a spherical tin target”, Mathematical Models and Computer Simulations, 9:1 (2017), 48–59 | DOI | MR
[8] St. Faik, A. Tauschwitz, I. Iosilevskiy, “The equation of state package FEOS for high energy density matter”, Computer Physics Communications, 227 (2018), 117–125 | DOI
[9] A. J. Kemp, J. Meyer ter Vehn, “An equation of state code for hot dense matter, based on the QEOS description”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 415:3 (1998), 674–676 | DOI
[10] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, “Quantum-statistical models of hot dense matter”, Methods for computation opacity and equation of state, Birkhäuser, Switzerland, 2005 | MR
[11] M. Born, E. Wolf, Principles of Optics, sixth edition, Pergamon, 1980 | MR
[12] T. B. Kaiser, “Laser ray tracing and power deposition on an unstructured three-dimensional grid”, Physical Review E, 61:1 (2000), 895–905 | DOI
[13] M. M. Basko, I. P. Tsygvintsev, “A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals”, Computer Physics Communications, 214 (2017), 59–70 | DOI | MR
[14] P. Tsygvintsev, A. Yu. Krukovskiy, V. A. Gasilov, V. G. Novikov, I. V. Popov, “Mesh-ray model and method for calculating the laser radiation absorption”, Mathematical Models and Computer Simulations, 8:4 (2016), 382–390 | DOI
[15] V. Romanov, I. P. Tsygvintsev, V. L. Paperny, A. A. Kologrivov, Yu. V. Korobkin, A. Yu. Krukovskiy, A. A. Rupasov, “Influence of the laser plasma-expansion specific on a cathode jet formation and the current stability in a laser-ignited vacuum discharge”, Physics of Plasmas, 25:8 (2018), 083107 | DOI