On the gas-dynamic model construction for the electrical conductivity of an ionized gas based on supercomputer simulation of electron kinetics
Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 101-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

A derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons was studied by local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.
Keywords: electron, kinetic equation, distribution function
Mots-clés : moments.
@article{MM_2023_35_12_a6,
     author = {M. B. Markov and O. S. Kosarev and S. V. Parot'kin and I. A. Tarakanov},
     title = {On the gas-dynamic model construction for the electrical conductivity of an ionized gas based on supercomputer simulation of electron kinetics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {35},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a6/}
}
TY  - JOUR
AU  - M. B. Markov
AU  - O. S. Kosarev
AU  - S. V. Parot'kin
AU  - I. A. Tarakanov
TI  - On the gas-dynamic model construction for the electrical conductivity of an ionized gas based on supercomputer simulation of electron kinetics
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 101
EP  - 112
VL  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a6/
LA  - ru
ID  - MM_2023_35_12_a6
ER  - 
%0 Journal Article
%A M. B. Markov
%A O. S. Kosarev
%A S. V. Parot'kin
%A I. A. Tarakanov
%T On the gas-dynamic model construction for the electrical conductivity of an ionized gas based on supercomputer simulation of electron kinetics
%J Matematičeskoe modelirovanie
%D 2023
%P 101-112
%V 35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a6/
%G ru
%F MM_2023_35_12_a6
M. B. Markov; O. S. Kosarev; S. V. Parot'kin; I. A. Tarakanov. On the gas-dynamic model construction for the electrical conductivity of an ionized gas based on supercomputer simulation of electron kinetics. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 101-112. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a6/

[1] L. I. Rudakov, M. V. Babykin, A. V. Gordeev i dr., Generatsiia i fokusirovka silnotochnykh reliativistskikh elektronnykh puchkov, Energoatomizdat, M., 1990, 279 pp.

[2] S. W. Massey, E. H.S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford, 1969

[3] Y. K. Kim, M. E. Rudd, “Theory for Ionization of Molecules by Electrons”, Phys. Rev., A50 (1994), 3954–3967 | DOI

[4] W. Hwang, Y. K. Kim, M. E. Rudd, “New Model for Electron-Impact Ionization Cross Sections of Atmospheric Molecules”, Chem. Phys., 104 (1996), 2956–2966

[5] Y. K. Kim, W. Hwang, N. M. Weinberger, “Electron-impact ionization cross sections of atmospheric molecules”, J. Chem. Phys., 106 (1997), 1026–1033 | DOI

[6] A. V. Berezin, M. B. Markov, S. V. Parot'kin, “On the particle method for electrons in an inhomogeneous scattering medium”, Comput. Math. Math. Phys., 61:9 (2021), 1521–1531 | DOI | DOI | MR | Zbl

[7] A. V. Berezin, M. B. Markov, O. S. Kosarev, S. V. Parot'kin, I. A. Tarakanov, “On the simulation of gas ionization by fast electrons”, Math. Models Comput. Simul., 14:4 (2022), 625–632 | DOI | DOI | MR

[8] M. B. Markov, O. S. Kosarev, S. V. Parot'kin, I. A. Tarakanov, “Modelirovanie elektroprovodnosti ionizirovannogo gaza na osnove chislennogo analiza kinetiki elektronov”, Preprinty IPM im. M.V. Keldysha, 2023, 042, 32 pp.

[9] V. L. Ginzburg, A. V. Gurevich, “Nonlinear phenonmena in a Plasma located in an alternating electromagnetic field”, Sov. Phys. Usp., 3 (1960), 175–194 | DOI | DOI | MR