Variational approach to finding the cost-optimal trajectory
Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 89-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are different approaches to define the path which is optimal in the sense of a construction cost. Such problems on practice are usually solved by various heuristic procedures. To get a theoretically justified result, one can derive an integral cost functional under certain assumptions and use variational principles. Thus, the classical problem of the calculus of variations is obtained. The necessary condition for the minimum of such a functional has the form of the integro-differential equation. This paper describes a numerical algorithm for solving this equation, which is based on the prominent and detally studied in the literature shooting method. Under additional assumptions via Schauder fixed point principle the existense of the solution is proved. The problem of the uniqueness of the solution is studied. A numerical example is provided.
Keywords: optimal trajectory, Schauder fixed-point theorem, shooting method.
Mots-clés : calculus of variations
@article{MM_2023_35_12_a5,
     author = {M. E. Abbasov and A. S. Sharlay},
     title = {Variational approach to finding the cost-optimal trajectory},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {35},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/}
}
TY  - JOUR
AU  - M. E. Abbasov
AU  - A. S. Sharlay
TI  - Variational approach to finding the cost-optimal trajectory
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 89
EP  - 100
VL  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/
LA  - ru
ID  - MM_2023_35_12_a5
ER  - 
%0 Journal Article
%A M. E. Abbasov
%A A. S. Sharlay
%T Variational approach to finding the cost-optimal trajectory
%J Matematičeskoe modelirovanie
%D 2023
%P 89-100
%V 35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/
%G ru
%F MM_2023_35_12_a5
M. E. Abbasov; A. S. Sharlay. Variational approach to finding the cost-optimal trajectory. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 89-100. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/

[1] D. Gurara, V. Klyuev et al, Trends and challenges in infrastructure investment in low-income developing countries, IMF working papers, 2017

[2] C. Saranya, M. Unnikrishnan et al, “Terrain Based D$^*$ Algorithm for Path Planning”, IFAC PapersOnLine, 49:1 (2016), 178–182 | DOI

[3] J. Carsten, A. Rankin et al, “Global Planning on the Mars Exploration Rovers: Software Integration and Surface Testing”, Journal of Field Robotics, 26:4 (2009), 337–357 | DOI

[4] S. I. Gass, C. M. Harris, “Dijkstra's algorithm”, Encyclopedia of Operations Research and Management Science, eds. Gass S.I., Harris C.M., Springer, NY, 2001 | DOI | MR

[5] X. Xiong, H. Min et al, “Application improvement of A$^*$ algorithm in intelligent vehicle trajectory planning”, Math. Biosci. Eng, 18:1 (2021), 1–21 | DOI | Zbl

[6] P. Sudhakara, V. Ganapathy, “Trajectory planning of a mobile robot using enhanced A-star algorithm”, Indian J. Sci. Technol, 9:41 (2016), 1–10 | DOI

[7] G. R. Chen, S. Guo et al, “Convex optimization and A-star algorithm combined path planning and obstacle avoidance algorithm”, Control and Decision, 35 (2020), 2907–2914

[8] S. M. LaValle, Rapidly-exploring random trees: a new tool for path planning, The annual research report, 1998

[9] D.-Q. He, H. B. Wang et al, “Robot path planning using improved rapidly-exploring random tree algorithm”, IEEE Industrial Cyber-Physical Systems (ICPS), 2018, 181–186 | Zbl

[10] Yi J. Yuan, Q. R. Sun et al, “Path planning of a manipulator based on an improved P_RRT$^*$ algorithm”, Complex Intell. Syst, 8 (2022), 2227–2245 | DOI

[11] S. M. LaValle, J. J. Kuffner, “RRT-connect: An efficient approach to single-query path planning”, IEEE International Conference on Robotics and Automation, 2000 | MR

[12] L. Jaillet, J. Cortes, T. Simeon, “Sampling-Based Path Planning on Costmaps”, IEEE Trans. Robot, 26:4 (2010), 635–646 | DOI

[13] Y. Li, W. Wei et al, “PQ-RRT$^*$: an improved path planning algorithm for mobile robots”, Expert Syst Appl., 152 (2020), 113425 | DOI

[14] W. Wang, L. Zuo et al, “A learning-based multi-RRT approach for robot path planning in narrow passages”, J. Intell. Robot. Syst, 90:1 (2018), 81–100 | DOI

[15] M. F. Zazai, A. R. Fugenschuh, “Computing the trajectories for the development of optimal routes”, Optimization and Engineering, 22 (2021), 975–999 | DOI | MR | Zbl

[16] J. Yates, X. Wang, N. Chen, “Assessing the effectiveness of k-shortest path sets in problems of network interdiction”, Optim Eng, 15 (2014), 721–749 | DOI | MR | Zbl

[17] J. Bruce, M. Veloso, “RoboCup 2002: Robot Soccer World Cup VI”, Real-Time Randomized Path Planning for Robot Navigation, Lecture Notes in Computer Sci, 2752, Springer, Berlin, 2003, 288–295 | DOI

[18] D. H. Douglas, “Least cost path in GIS using an accumulated cost surface and slope lines”, Cartographica, 31 (1994), 37–51 | DOI

[19] D. Tomlin, “Propagating radial waves of travel cost in a grid”, Intern. J. of Geographical Information Sci, 24:9 (2010), 1391–1413 | DOI

[20] C. Yu, J. Lee et al, “Extensions to least-cost path algorithms for roadway planning”, International J. of Geographical Information Science, 17:4 (2003), 361–376 | DOI

[21] M. E. Abbasov, A. S. Sharlay, “Poisk optimal'noy po stoimosti stroitel'stva traektorii dorogi na rel'efe mestnosti”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 17:1 (2021), 4–12 | MR

[22] N. G. Bandurin, N. A. Gureeva, “Metod i paket programm dlya chislennogo resheniya sistem sushchestvenno nelineynyh obyknovennyh integro-differentsial'no-algebraicheskih uravneniy”, Matem. Modelirovanie, 24:2 (2012), 3–16 | MR | Zbl

[23] N. S. Bahvalov, N. P. Zhidkov, G. M. Kobel'kov, Chislennye metody, Laboratoriya znaniy, M., 2020, 636 pp. | MR

[24] B. A. Budak, “Shooting method for solving equilibrium programming problems”, Comput. Math. and Math. Phys, 53 (2013), 1819–1824 | MR | Zbl

[25] L. A. Lyusternik, V. I. Sobolev, Elementy funktsional'nogo analiza, Nauka, M., 1965, 520 pp. | MR

[26] V. V. Stepanov, Kurs differentsial'nyh uravneniy, GIFML, M., 1958, 468 pp.