Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_12_a5, author = {M. E. Abbasov and A. S. Sharlay}, title = {Variational approach to finding the cost-optimal trajectory}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {89--100}, publisher = {mathdoc}, volume = {35}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/} }
M. E. Abbasov; A. S. Sharlay. Variational approach to finding the cost-optimal trajectory. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 89-100. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/
[1] D. Gurara, V. Klyuev et al, Trends and challenges in infrastructure investment in low-income developing countries, IMF working papers, 2017
[2] C. Saranya, M. Unnikrishnan et al, “Terrain Based D$^*$ Algorithm for Path Planning”, IFAC PapersOnLine, 49:1 (2016), 178–182 | DOI
[3] J. Carsten, A. Rankin et al, “Global Planning on the Mars Exploration Rovers: Software Integration and Surface Testing”, Journal of Field Robotics, 26:4 (2009), 337–357 | DOI
[4] S. I. Gass, C. M. Harris, “Dijkstra's algorithm”, Encyclopedia of Operations Research and Management Science, eds. Gass S.I., Harris C.M., Springer, NY, 2001 | DOI | MR
[5] X. Xiong, H. Min et al, “Application improvement of A$^*$ algorithm in intelligent vehicle trajectory planning”, Math. Biosci. Eng, 18:1 (2021), 1–21 | DOI | Zbl
[6] P. Sudhakara, V. Ganapathy, “Trajectory planning of a mobile robot using enhanced A-star algorithm”, Indian J. Sci. Technol, 9:41 (2016), 1–10 | DOI
[7] G. R. Chen, S. Guo et al, “Convex optimization and A-star algorithm combined path planning and obstacle avoidance algorithm”, Control and Decision, 35 (2020), 2907–2914
[8] S. M. LaValle, Rapidly-exploring random trees: a new tool for path planning, The annual research report, 1998
[9] D.-Q. He, H. B. Wang et al, “Robot path planning using improved rapidly-exploring random tree algorithm”, IEEE Industrial Cyber-Physical Systems (ICPS), 2018, 181–186 | Zbl
[10] Yi J. Yuan, Q. R. Sun et al, “Path planning of a manipulator based on an improved P_RRT$^*$ algorithm”, Complex Intell. Syst, 8 (2022), 2227–2245 | DOI
[11] S. M. LaValle, J. J. Kuffner, “RRT-connect: An efficient approach to single-query path planning”, IEEE International Conference on Robotics and Automation, 2000 | MR
[12] L. Jaillet, J. Cortes, T. Simeon, “Sampling-Based Path Planning on Costmaps”, IEEE Trans. Robot, 26:4 (2010), 635–646 | DOI
[13] Y. Li, W. Wei et al, “PQ-RRT$^*$: an improved path planning algorithm for mobile robots”, Expert Syst Appl., 152 (2020), 113425 | DOI
[14] W. Wang, L. Zuo et al, “A learning-based multi-RRT approach for robot path planning in narrow passages”, J. Intell. Robot. Syst, 90:1 (2018), 81–100 | DOI
[15] M. F. Zazai, A. R. Fugenschuh, “Computing the trajectories for the development of optimal routes”, Optimization and Engineering, 22 (2021), 975–999 | DOI | MR | Zbl
[16] J. Yates, X. Wang, N. Chen, “Assessing the effectiveness of k-shortest path sets in problems of network interdiction”, Optim Eng, 15 (2014), 721–749 | DOI | MR | Zbl
[17] J. Bruce, M. Veloso, “RoboCup 2002: Robot Soccer World Cup VI”, Real-Time Randomized Path Planning for Robot Navigation, Lecture Notes in Computer Sci, 2752, Springer, Berlin, 2003, 288–295 | DOI
[18] D. H. Douglas, “Least cost path in GIS using an accumulated cost surface and slope lines”, Cartographica, 31 (1994), 37–51 | DOI
[19] D. Tomlin, “Propagating radial waves of travel cost in a grid”, Intern. J. of Geographical Information Sci, 24:9 (2010), 1391–1413 | DOI
[20] C. Yu, J. Lee et al, “Extensions to least-cost path algorithms for roadway planning”, International J. of Geographical Information Science, 17:4 (2003), 361–376 | DOI
[21] M. E. Abbasov, A. S. Sharlay, “Poisk optimal'noy po stoimosti stroitel'stva traektorii dorogi na rel'efe mestnosti”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 17:1 (2021), 4–12 | MR
[22] N. G. Bandurin, N. A. Gureeva, “Metod i paket programm dlya chislennogo resheniya sistem sushchestvenno nelineynyh obyknovennyh integro-differentsial'no-algebraicheskih uravneniy”, Matem. Modelirovanie, 24:2 (2012), 3–16 | MR | Zbl
[23] N. S. Bahvalov, N. P. Zhidkov, G. M. Kobel'kov, Chislennye metody, Laboratoriya znaniy, M., 2020, 636 pp. | MR
[24] B. A. Budak, “Shooting method for solving equilibrium programming problems”, Comput. Math. and Math. Phys, 53 (2013), 1819–1824 | MR | Zbl
[25] L. A. Lyusternik, V. I. Sobolev, Elementy funktsional'nogo analiza, Nauka, M., 1965, 520 pp. | MR
[26] V. V. Stepanov, Kurs differentsial'nyh uravneniy, GIFML, M., 1958, 468 pp.