Variational approach to finding the cost-optimal trajectory
Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 89-100

Voir la notice de l'article provenant de la source Math-Net.Ru

There are different approaches to define the path which is optimal in the sense of a construction cost. Such problems on practice are usually solved by various heuristic procedures. To get a theoretically justified result, one can derive an integral cost functional under certain assumptions and use variational principles. Thus, the classical problem of the calculus of variations is obtained. The necessary condition for the minimum of such a functional has the form of the integro-differential equation. This paper describes a numerical algorithm for solving this equation, which is based on the prominent and detally studied in the literature shooting method. Under additional assumptions via Schauder fixed point principle the existense of the solution is proved. The problem of the uniqueness of the solution is studied. A numerical example is provided.
Keywords: optimal trajectory, Schauder fixed-point theorem, shooting method.
Mots-clés : calculus of variations
@article{MM_2023_35_12_a5,
     author = {M. E. Abbasov and A. S. Sharlay},
     title = {Variational approach to finding the cost-optimal trajectory},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {35},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/}
}
TY  - JOUR
AU  - M. E. Abbasov
AU  - A. S. Sharlay
TI  - Variational approach to finding the cost-optimal trajectory
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 89
EP  - 100
VL  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/
LA  - ru
ID  - MM_2023_35_12_a5
ER  - 
%0 Journal Article
%A M. E. Abbasov
%A A. S. Sharlay
%T Variational approach to finding the cost-optimal trajectory
%J Matematičeskoe modelirovanie
%D 2023
%P 89-100
%V 35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/
%G ru
%F MM_2023_35_12_a5
M. E. Abbasov; A. S. Sharlay. Variational approach to finding the cost-optimal trajectory. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 89-100. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a5/