Dynamic load balancing using adaptive locally refined meshes
Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 69-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Representation methods and processing algorithms for dynamically adaptive locally refined meshes are proposed for serial and parallel computing systems, including hybrid ones. Estimates of the complexity of the algorithms are given. New parallel algorithms for decomposition of locally condensed meshes and dynamic load balancing are proposed, which provide low overhead and reduce overall computation time for two- and three-dimensional numerical modeling. Time reduction is achieved by decreasing the number of cells in the computational grid (relative to the regular grid) and including parallel processing.
Keywords: supercomputer, dynamic load balancing, locally refined computational meshes, computation speedup, GPU.
Mots-clés : domain decomposition
@article{MM_2023_35_12_a4,
     author = {S. K. Grigoriev and D. A. Zakharov and M. A. Kornilina and M. V. Yakobovskiy},
     title = {Dynamic load balancing using adaptive locally refined meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--88},
     publisher = {mathdoc},
     volume = {35},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/}
}
TY  - JOUR
AU  - S. K. Grigoriev
AU  - D. A. Zakharov
AU  - M. A. Kornilina
AU  - M. V. Yakobovskiy
TI  - Dynamic load balancing using adaptive locally refined meshes
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 69
EP  - 88
VL  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/
LA  - ru
ID  - MM_2023_35_12_a4
ER  - 
%0 Journal Article
%A S. K. Grigoriev
%A D. A. Zakharov
%A M. A. Kornilina
%A M. V. Yakobovskiy
%T Dynamic load balancing using adaptive locally refined meshes
%J Matematičeskoe modelirovanie
%D 2023
%P 69-88
%V 35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/
%G ru
%F MM_2023_35_12_a4
S. K. Grigoriev; D. A. Zakharov; M. A. Kornilina; M. V. Yakobovskiy. Dynamic load balancing using adaptive locally refined meshes. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 69-88. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/

[1] Reiting superkomp'yuterov, http://top500.org

[2] M. V. Iakobovskii, Vvedenie v parallelnye metody resheniia zadach, MGU, M., 2013, 328 pp.

[3] B. Hendrickson, R. Leland, “A Multilevel Algorithm for Partitioning Graphs”, Supercomputing '95 Proc. (San Diego, CA, 1995) http://www.leonidzhukov.net/hse/2016/networks/papers/MultilevelAlgorithmPartitioningGraphs.pdf

[4] G. Karypis, Family of Graph and Hypergraph Partitioning Software, http://glaros.dtc.umn.edu/gkhome/views/metis/

[5] M. A. Kornilina, M. V. Iakobovskii, “Otsenka nakladnyh raskhodov pri vypolnenii raschetov na lokalno izmelchaemykh setkakh”, Preprinty IPM im. M.V.Keldysha, 2022, 102, 36 pp. | DOI

[6] A. I. Sukhinov, Matematicheskoe modelirovanie protsessov perenosa primesei v zhidkostiakh i poristykh sredakh, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, specialnost 05.13.18, Matematicheskoe modelirovanie, chislennye metody i kompleksy programm, M., 2009, 24 pp.

[7] A. A. Samarskii, Teoriia raznostnykh skhem, Nauka, M., 1989, 616 pp.

[8] I. V. Abalakin, N. S. Zhdanova, S. A. Sukov, “Reconstruction of body geometry on unstructured meshes by the immersed boundary method”, Mathematical Models and Computer Simulations, 9:1 (2017), 83–91 | MR | Zbl

[9] A. I. Sukhinov, “Postroenie dekartovykh setok s dinamicheskoi adaptatsiei k resheniiu”, Matematicheskoe modelirovanie, 22:1 (2010), 86–98 | MR | Zbl

[10] A. Dubey et al, “A survey of high level frameworks in block-structured adaptive mesh refinement packages”, J. of Parallel and Distributed Computing, 74:12 (2014), 3217–3227 | DOI

[11] M. J. Aftosmis, Solution adaptive Cartesian grid methods for aerodynamic flows with complex geometries, VKI Lecture Ser., 1997- 02, 109 pp. https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aftosmis_97vkiNotes.pdf

[12] M. Adams et al, Chombo software package for AMR applications-design document, 2015, 206 pp. https://crd.lbl.gov/assets/pubs_presos/chomboDesign.pdf

[13] C. Burstedde, L. C. Wilcox, O. Ghattas, “p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees”, SIAM J. on Sci. Computing, 33:3 (2011), 1103–1133 | DOI | MR | Zbl

[14] W. Zhang, A. Myers, K. Gott, A. Almgren, J. Bell, “AMReX: Block-structured adaptive mesh refinement for multiphysics applications”, The International Journal of High Performance Computing Applications, 35:6 (2021), 508–526 | DOI

[15] A. L. Afendikov, A. A. Davydov, A. E. i dr. Lutskii, Adaptivnye veivletnye algoritmy dlia resheniia zadach gidro- i gazovoi dinamiki na dekartovykh setkakh, IPM im. M.V. Keldysha, M., 2016, 232 pp.

[16] FlowVision: Adaptatsii raschetnoi setki i tonkosti ikh primeneniya, , 19.03.2020 https://flowvision.ru/ru/support-menu-header-ru/blog-ru/adaptation?showall=1

[17] Adaptive Mesh Refinement, , Los Alamos National Laboratory https://www.lanl.gov/projects/codesign/codesign-summer-school/research-areas/adaptive-mesh-refinement.php

[18] A. V. Gorobets, S. A. Sukov, F. Kh. Trias, “Problemy ispolzovaniia sovremennykh superkompiuterov pri chislennom modelirovanii v gidrodinamike i aeroakustike”, Uchenye zapiski TSAGI, 41:2 (2010), 65–71

[19] M. A. Kornilina, M. V. Yakobovskii, “Modeling of Evolution of Complicated Nonlinear Systems on Multiprocessor Computational Complexes”, Russian J. of Physical Chemistry A, 1995, 1390–1393

[20] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd ed., MIT Press, Cambridge, 2002 | MR

[21] V. A. Bakhtin, V. A. Kriukov, “DVM-podkhod k avtomatizatsii razrabotki parallelnykh programm dlia klasterov”, Programmirovanie, 2019, no. 3, 43–56 | DOI | MR

[22] Opisanie DVM sistemy, http://dvm-system.org