Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_12_a4, author = {S. K. Grigoriev and D. A. Zakharov and M. A. Kornilina and M. V. Yakobovskiy}, title = {Dynamic load balancing using adaptive locally refined meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {69--88}, publisher = {mathdoc}, volume = {35}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/} }
TY - JOUR AU - S. K. Grigoriev AU - D. A. Zakharov AU - M. A. Kornilina AU - M. V. Yakobovskiy TI - Dynamic load balancing using adaptive locally refined meshes JO - Matematičeskoe modelirovanie PY - 2023 SP - 69 EP - 88 VL - 35 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/ LA - ru ID - MM_2023_35_12_a4 ER -
%0 Journal Article %A S. K. Grigoriev %A D. A. Zakharov %A M. A. Kornilina %A M. V. Yakobovskiy %T Dynamic load balancing using adaptive locally refined meshes %J Matematičeskoe modelirovanie %D 2023 %P 69-88 %V 35 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/ %G ru %F MM_2023_35_12_a4
S. K. Grigoriev; D. A. Zakharov; M. A. Kornilina; M. V. Yakobovskiy. Dynamic load balancing using adaptive locally refined meshes. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 69-88. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a4/
[1] Reiting superkomp'yuterov, http://top500.org
[2] M. V. Iakobovskii, Vvedenie v parallelnye metody resheniia zadach, MGU, M., 2013, 328 pp.
[3] B. Hendrickson, R. Leland, “A Multilevel Algorithm for Partitioning Graphs”, Supercomputing '95 Proc. (San Diego, CA, 1995) http://www.leonidzhukov.net/hse/2016/networks/papers/MultilevelAlgorithmPartitioningGraphs.pdf
[4] G. Karypis, Family of Graph and Hypergraph Partitioning Software, http://glaros.dtc.umn.edu/gkhome/views/metis/
[5] M. A. Kornilina, M. V. Iakobovskii, “Otsenka nakladnyh raskhodov pri vypolnenii raschetov na lokalno izmelchaemykh setkakh”, Preprinty IPM im. M.V.Keldysha, 2022, 102, 36 pp. | DOI
[6] A. I. Sukhinov, Matematicheskoe modelirovanie protsessov perenosa primesei v zhidkostiakh i poristykh sredakh, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, specialnost 05.13.18, Matematicheskoe modelirovanie, chislennye metody i kompleksy programm, M., 2009, 24 pp.
[7] A. A. Samarskii, Teoriia raznostnykh skhem, Nauka, M., 1989, 616 pp.
[8] I. V. Abalakin, N. S. Zhdanova, S. A. Sukov, “Reconstruction of body geometry on unstructured meshes by the immersed boundary method”, Mathematical Models and Computer Simulations, 9:1 (2017), 83–91 | MR | Zbl
[9] A. I. Sukhinov, “Postroenie dekartovykh setok s dinamicheskoi adaptatsiei k resheniiu”, Matematicheskoe modelirovanie, 22:1 (2010), 86–98 | MR | Zbl
[10] A. Dubey et al, “A survey of high level frameworks in block-structured adaptive mesh refinement packages”, J. of Parallel and Distributed Computing, 74:12 (2014), 3217–3227 | DOI
[11] M. J. Aftosmis, Solution adaptive Cartesian grid methods for aerodynamic flows with complex geometries, VKI Lecture Ser., 1997- 02, 109 pp. https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/publications/aftosmis_97vkiNotes.pdf
[12] M. Adams et al, Chombo software package for AMR applications-design document, 2015, 206 pp. https://crd.lbl.gov/assets/pubs_presos/chomboDesign.pdf
[13] C. Burstedde, L. C. Wilcox, O. Ghattas, “p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees”, SIAM J. on Sci. Computing, 33:3 (2011), 1103–1133 | DOI | MR | Zbl
[14] W. Zhang, A. Myers, K. Gott, A. Almgren, J. Bell, “AMReX: Block-structured adaptive mesh refinement for multiphysics applications”, The International Journal of High Performance Computing Applications, 35:6 (2021), 508–526 | DOI
[15] A. L. Afendikov, A. A. Davydov, A. E. i dr. Lutskii, Adaptivnye veivletnye algoritmy dlia resheniia zadach gidro- i gazovoi dinamiki na dekartovykh setkakh, IPM im. M.V. Keldysha, M., 2016, 232 pp.
[16] FlowVision: Adaptatsii raschetnoi setki i tonkosti ikh primeneniya, , 19.03.2020 https://flowvision.ru/ru/support-menu-header-ru/blog-ru/adaptation?showall=1
[17] Adaptive Mesh Refinement, , Los Alamos National Laboratory https://www.lanl.gov/projects/codesign/codesign-summer-school/research-areas/adaptive-mesh-refinement.php
[18] A. V. Gorobets, S. A. Sukov, F. Kh. Trias, “Problemy ispolzovaniia sovremennykh superkompiuterov pri chislennom modelirovanii v gidrodinamike i aeroakustike”, Uchenye zapiski TSAGI, 41:2 (2010), 65–71
[19] M. A. Kornilina, M. V. Yakobovskii, “Modeling of Evolution of Complicated Nonlinear Systems on Multiprocessor Computational Complexes”, Russian J. of Physical Chemistry A, 1995, 1390–1393
[20] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd ed., MIT Press, Cambridge, 2002 | MR
[21] V. A. Bakhtin, V. A. Kriukov, “DVM-podkhod k avtomatizatsii razrabotki parallelnykh programm dlia klasterov”, Programmirovanie, 2019, no. 3, 43–56 | DOI | MR
[22] Opisanie DVM sistemy, http://dvm-system.org