Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_12_a3, author = {A. I. Sukhinov and E. A. Protsenko and S. V. Protsenko and N. D. Panasenko}, title = {Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {51--68}, publisher = {mathdoc}, volume = {35}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/} }
TY - JOUR AU - A. I. Sukhinov AU - E. A. Protsenko AU - S. V. Protsenko AU - N. D. Panasenko TI - Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data JO - Matematičeskoe modelirovanie PY - 2023 SP - 51 EP - 68 VL - 35 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/ LA - ru ID - MM_2023_35_12_a3 ER -
%0 Journal Article %A A. I. Sukhinov %A E. A. Protsenko %A S. V. Protsenko %A N. D. Panasenko %T Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data %J Matematičeskoe modelirovanie %D 2023 %P 51-68 %V 35 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/ %G ru %F MM_2023_35_12_a3
A. I. Sukhinov; E. A. Protsenko; S. V. Protsenko; N. D. Panasenko. Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 51-68. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/
[1] Scientific and Technical documentation, Version 41.45, Delft University of Technology, Environmental Fluid Mechanics Section, January 2023 http://www.swan.tudelft.nl
[2] A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, A. V. Shishenya, “Mathematical model for calculating coastal wave processes”, Mathematical Models and Computer Simulations, 5:2 (2013), 122–129 | DOI | MR
[3] A. I. Sukhinov, A. A. Sukhinov, “Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models”, Parallel Computational Fluid Dynamics 2004: Multidisciplinary Applications, 2005, 231–238 | DOI
[4] A. I. Sukhinov, A. E. Chistyakov, E. V. Alekseenko, “Numerical Realization of the Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System”, Mathematical Models and Computer Simulations, 3:5 (2011), 562–574 | DOI | MR | Zbl
[5] A. S. Monin, “Turbulence and microstructure in the ocean”, Soviet Physics-Uspekhi, 16:1 (1973), 121–131 | DOI | DOI
[6] YU.I. Shokin, L.B. Chubarov, An.G. Marchuk, K.V. Simonov, Vychislitelnyi eksperiment v probleme tsunami, Nauka, SO, Novosibirsk, 1989, 164 pp.
[7] O. M. Belotserkovskiy, Turbulentnost: novye podkhody, Nauka, M., 2003, 286 pp.
[8] N. D. Panasenko, A. Y. Poluyan, N. S. Motuz, “Algorithm for monitoring the plankton population dynamics based on satellite sensing data”, J. of Physics: Conf. Ser., 2131:4 3 (2021), 032052 | DOI
[9] B. N. Chetverushkin, M. V. Yakobovskiy, “Vychislitelnye algoritmy i arkhitektura sistem vysokoi proizvoditelnosti”, Preprinty IPM im. M.V. Keldysha, 2018, 052, 12 pp.
[10] M. Genseberger, J. Donners, “Hybrid SWAN for Fast and Efficient Practical Wave Modelling”, ICCS 2020: Computational Science - ICCS 2020, Lecture Notes in Computer Science, 12139, Springer Inter. Publ., Cham, 2022, 87–100 | DOI | MR
[11] Edinaya gosudarstvennaya sistema informatsii ob obstanovke v Mirovom okeane, http://portal.esimo.ru