Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data
Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 51-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a parallel implementation of the wave hydrodynamics model and the modern SWAN wind-wave model. The paper presents the results of parameterization of vertical turbulent exchange using filtered expedition data, which are included in the hydrodynamics model to clarify the coefficient of turbulent exchange inhomogeneous vertically. As input data in the models, the contours of the image of the Sea of Azov are used, determined by the method of a local binary template obtained from the WorldView satellite. The results of numerical experiments obtained on the basis of SWAN and a three-dimensional model of wave hydrodynamics are presented, and their comparison is carried out. The article describes the parallel implementation of SWAN, calculates the indicators for evaluating the parallel computational efficiency of SWAN, determines the computational scalability of SWAN depending on the number of computational threads. The indicators for evaluating the parallel computational efficiency of a three-dimensional wave model of hydrodynamics are presented.
Mots-clés : multi-scale turbulence
Keywords: SWAN, three-dimensional wave hydrodynamics model, Local Binary Patterns (LDP), large eddy simulation (LES), parallel efficiency, computational scalability.
@article{MM_2023_35_12_a3,
     author = {A. I. Sukhinov and E. A. Protsenko and S. V. Protsenko and N. D. Panasenko},
     title = {Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--68},
     publisher = {mathdoc},
     volume = {35},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - E. A. Protsenko
AU  - S. V. Protsenko
AU  - N. D. Panasenko
TI  - Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 51
EP  - 68
VL  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/
LA  - ru
ID  - MM_2023_35_12_a3
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A E. A. Protsenko
%A S. V. Protsenko
%A N. D. Panasenko
%T Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data
%J Matematičeskoe modelirovanie
%D 2023
%P 51-68
%V 35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/
%G ru
%F MM_2023_35_12_a3
A. I. Sukhinov; E. A. Protsenko; S. V. Protsenko; N. D. Panasenko. Parallel numerical implementation of mathematical wave hydrodynamics models taking into account the features of vertical turbulent exchange using remote sensing data. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 51-68. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a3/

[1] Scientific and Technical documentation, Version 41.45, Delft University of Technology, Environmental Fluid Mechanics Section, January 2023 http://www.swan.tudelft.nl

[2] A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, A. V. Shishenya, “Mathematical model for calculating coastal wave processes”, Mathematical Models and Computer Simulations, 5:2 (2013), 122–129 | DOI | MR

[3] A. I. Sukhinov, A. A. Sukhinov, “Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models”, Parallel Computational Fluid Dynamics 2004: Multidisciplinary Applications, 2005, 231–238 | DOI

[4] A. I. Sukhinov, A. E. Chistyakov, E. V. Alekseenko, “Numerical Realization of the Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System”, Mathematical Models and Computer Simulations, 3:5 (2011), 562–574 | DOI | MR | Zbl

[5] A. S. Monin, “Turbulence and microstructure in the ocean”, Soviet Physics-Uspekhi, 16:1 (1973), 121–131 | DOI | DOI

[6] YU.I. Shokin, L.B. Chubarov, An.G. Marchuk, K.V. Simonov, Vychislitelnyi eksperiment v probleme tsunami, Nauka, SO, Novosibirsk, 1989, 164 pp.

[7] O. M. Belotserkovskiy, Turbulentnost: novye podkhody, Nauka, M., 2003, 286 pp.

[8] N. D. Panasenko, A. Y. Poluyan, N. S. Motuz, “Algorithm for monitoring the plankton population dynamics based on satellite sensing data”, J. of Physics: Conf. Ser., 2131:4 3 (2021), 032052 | DOI

[9] B. N. Chetverushkin, M. V. Yakobovskiy, “Vychislitelnye algoritmy i arkhitektura sistem vysokoi proizvoditelnosti”, Preprinty IPM im. M.V. Keldysha, 2018, 052, 12 pp.

[10] M. Genseberger, J. Donners, “Hybrid SWAN for Fast and Efficient Practical Wave Modelling”, ICCS 2020: Computational Science - ICCS 2020, Lecture Notes in Computer Science, 12139, Springer Inter. Publ., Cham, 2022, 87–100 | DOI | MR

[11] Edinaya gosudarstvennaya sistema informatsii ob obstanovke v Mirovom okeane, http://portal.esimo.ru