Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_12_a1, author = {E.Yu.Shchetinin}, title = {On using the computer linguistic models in the classification of biomedical images}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {18--30}, publisher = {mathdoc}, volume = {35}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a1/} }
E.Yu.Shchetinin. On using the computer linguistic models in the classification of biomedical images. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 18-30. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a1/
[1] Y. Liu, Y. Zhang, Y. Wang, F. Hou, A Survey of Visual Transformers, 2020, arXiv: 2111.06091v1
[2] E. U. Henrya, O. Emebob, A. C. Omonhinmin, Vision Transformers in Medical Imaging: A Review, 2020, arXiv: 2211.10043
[3] B. Wu, C. Xu, X. Dai, X. Wan, P. Zhang, Z. Yan, etc, Visual Transformers: Token-based Image Representation and Proc. for Comp. Vision, 2020, arXiv: 2006.03677v4 [cs.CV]
[4] C. Matsoukas, J. F. Haslum, M. Soderberg, K. Smith, Is it Time to Replace CNNs with Transformers for Medical Images?, 2021, arXiv: 2108.09038v1
[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner et al, An image is worth 16?16 words: Transformers for image recognition at scale, 2021, arXiv: 2010.11929
[6] Badri N. Patro, Vijay Srinivas Agneeswaran. Efficiency 360: Efficient Vision Transformers, 2023, arXiv: 2302.08374v2
[7] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, A. Dosovitskiy, Do vision transformers see like convolutional neural networks?, 2021, arXiv: 2108.08810
[8] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, “Training data-efficient image transformers and distillation through attention”, Intern. Conf. on Machine Learning, PMLR, 2021, 10347–10357
[9] K. He, C. Gan, Z. Li, I. Rekik, Z. Yin, W. Ji, Y. Gao, Q. Wang, J. Zhang, “Transformers in medical image analysis”, Intelligent Medicine, 3 (2023), 59–78 | DOI
[10] D. Shome, T. Kar, S. N. Mohanty, P. Tiwari, K. Muhammad, A. AlTameem, Y. Zhang, “COVID Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare”, Intern. J. of Environmental Research and Public Health, 18 (2021), 11086 | DOI
[11] K. Krishnan, Vision Transformer based COVID-19 Detection using Chest X-rays, 2021, arXiv: 2110.04458v1
[12] L. Balderas, M. Lastra, A. Lainez-Ramos-Bossini, J. Benitez, “COVID-ViT: COVID-19 De-tection Method Based on Vision Transformers”, International Conf. on Intelligent Systems Design and Applications, 2023, 81–90
[13] S. Park et al, Vision transformer for COVID-19 CXR diagnosis using chest X-ray feature corpus, 2021, arXiv: 2103.07055 | MR
[14] M. Chetoui, M. Akhloufi, “Explainable vision transformers and radiomics for COVID-19 de-tection in chest X-rays”, J. Clin. Med., 11 (2022), 3013 | DOI
[15] A. Marefat, M. Marefat, J. H. Joloudari, M. A. Nematollahi, R. Lashgari, “CCTCOVID: COVID-19 detection from chest X-ray images using compact convolutional transformers”, Sec. Digital Public Health, 11 (2023)
[16] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, Transformers in vision: A survey, 2021, arXiv: 2101.01169
[17] Murphy Kevin P., Probabilistic machine learning, MIT Press Cambridge, MA, Cambridge, 2021
[18] Chest X-ray images for the detection of COVID-19, https://github.com/lindawangg/COVID-Net
[19] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014, arXiv: 1409.1556 | Zbl
[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, “Rethinking the inception architec-ture for computer vision”, Proc. of the IEEE Conf. on Comp. Vision Pattern Recognition (CVPR), 2016, 2818–2826
[21] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770–778
[22] M. Tan, V. Quoc Le, EfficientNetV2: Smaller Models and Faster Training, 2021, arXiv: 2104.00298v3 | MR
[23] ViT-Keras library, https://pypi.org/project/vit-keras/
[24] E. Iu. Shchetinin, “Obnaruzhenie koronovirusnoi infektsii COVID-19 na osnove analiza rentgenovskikh snimkov grudnoi kletki metodami glubokogo obucheniia”, Komputernaia optika, 46:6 (2022), 963–970
[25] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, “End-to-end object detection with transformers”, European Conf. on Comp. Vision, 2020, 213–229
[26] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, L. Beyer, How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers, 2021, arXiv: 2106.10270
[27] T. Ridnik, E. Ben-Baruch, A. Noy, L. Zelnik-Manor, Imagenet-21K pretraining for the masses, 2021, arXiv: 2104.10972