Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_12_a0, author = {D. V. Shtakin and S. A. Shevlyagina and A. Yu. Torgashov}, title = {Neural network model for estimating the quality indicators of industrial fractionator products}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--17}, publisher = {mathdoc}, volume = {35}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_12_a0/} }
TY - JOUR AU - D. V. Shtakin AU - S. A. Shevlyagina AU - A. Yu. Torgashov TI - Neural network model for estimating the quality indicators of industrial fractionator products JO - Matematičeskoe modelirovanie PY - 2023 SP - 3 EP - 17 VL - 35 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_12_a0/ LA - ru ID - MM_2023_35_12_a0 ER -
%0 Journal Article %A D. V. Shtakin %A S. A. Shevlyagina %A A. Yu. Torgashov %T Neural network model for estimating the quality indicators of industrial fractionator products %J Matematičeskoe modelirovanie %D 2023 %P 3-17 %V 35 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_12_a0/ %G ru %F MM_2023_35_12_a0
D. V. Shtakin; S. A. Shevlyagina; A. Yu. Torgashov. Neural network model for estimating the quality indicators of industrial fractionator products. Matematičeskoe modelirovanie, Tome 35 (2023) no. 12, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2023_35_12_a0/
[1] P. Kadlec, B. Gabrys, S. Strandt, “Data-driven soft sensors in the process industry”, Computers Chemical Engineering, 33:4 (2009), 795–814 | DOI
[2] M. Dam, D. N. Saraf, “Design of neural networks using genetic algorithm for on-line property estimation of crude fractionator products”, Computers Chemical Eng, 30:4 (2006), 722–729 | DOI
[3] D. Whitley, T. Starkweather, C. Bogart, “Genetic algorithms and neural networks: Optimizing connections and connectivity”, Parallel computing, 14:3 (1990), 347–361 | DOI | MR
[4] G. A.P. de Morais, B. H.G. Barbosa, D. D. Ferreira, L. S. Paiva, “Soft sensors design in a petrochemical process using an Evolutionary Algorithm”, Measurement, 148 (2019), 106920 | DOI
[5] S. Ding, C. Su, J. Yu., “An optimizing BP neural network algorithm based on genetic algorithm”, Artificial Intelligence Review, 36:2 (2011), 153–162 | DOI
[6] L. S. Iliadis, C. Jayne, “Emerging applications of deep learning and spiking ANN”, Neural Computing and Applications, 32:23 (2020), 17119–17124 | DOI | MR
[7] J. J. Zhu S. Borzooei, J. Sun, Z. J. Ren, “Deep learning optimization for soft sensing of hard-to-measure wastewater key variables”, ACS ES T Engineering, 2:7 (2022), 1341–1355 | DOI
[8] S. M.R. Loghmanian, H. Jamaluddin, R. Ahmad, “Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm”, Neural Computing and Applications, 21:6 (2012), 1281–1295 | DOI
[9] Q. Li et al, “A soft-sensing method for product quality monitoring based on particle swarm optimization deep belief networks”, Transactions of the Institute of Measurement and Control, 44:15 (2022), 2900–2910 | DOI
[10] H. Wu, Y. Han, J. Jin, Z. Geng, “Novel deep learning based on data fusion integrating correlation analysis for soft sensor modeling”, Industrial Engineering Chemistry Research, 60:27 (2021), 10001–10010 | DOI
[11] N. M. Aszemi, P. D. D. Dominic, “Hyperparameter optimization in convolutional neural network using genetic algorithms”, Int. J. of Advanced Computer Sci. Applications, 10:6 (2019)
[12] M. Hartley, T. S.G. Olsson, “dtoolAI: Reproducibility for deep learning”, Patterns, 1:5 (2020), 100073 | DOI
[13] M. Shahriari, R. Ramler, L. Fischer, “How do deep-learning framework versions affect the reproducibility of neural network models”, Machine Learning and Knowledge Extraction, 4:4 (2022), 888–911 | DOI
[14] O. Yu. Snegirev, A. Yu. Torgashov, “Opredelenie optimalnykh parametrov adaptivnogo virtualnogo analizatora dlia massoobmennogo tekhnologicheskogo processa”, Sbornik trudov XIII Vserossiiskogo soveshchaniia po problemam upravleniia, Institut problem upravleniia im. V.A. Trapeznikova RAN, M., 2019, 2655–2659
[15] H. A. Al-Jamimi, G. M. BinMakhashen, K. Deb, T. A. Saleh, “Multiobjective optimization and analysis of petroleum refinery catalytic processes: A review”, Fuel, 288 (2021), 119678 | DOI
[16] L. Ingber, “Adaptive Simulated Annealing (ASA): Lessons Learned”, Invited Paper to a Special Issue of the Polish Journal Control and Cybernetics on “Simulated Annealing Applied to Combinatorial Optimization”, 1995 | MR
[17] E. Mezura-Montes, C. A. Coello Coello, “Constraint-handling in nature-inspired numerical optimization: Past, present and future”, Swarm and Evolutionary Computation. Constraint-handling in nature-inspired numerical optimization, 1:4 (2011), 173–194 | MR
[18] J. Forkman, “Estimator and Tests for Common Coefficients of Variation in Normal Distri-butions”, Communications in Statistics Theory and Methods, 38:2 (2009), 233–251 | DOI | MR | Zbl