Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_11_a7, author = {V. I. Mazhukin and A. V. Shapranov and O. N. Koroleva and A. V. Mazhukin}, title = {Modification of the {Wilson--Frankel} kinetic model and atomistic simulation of the rate of melting/crystallization of metals}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {103--121}, publisher = {mathdoc}, volume = {35}, number = {11}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/} }
TY - JOUR AU - V. I. Mazhukin AU - A. V. Shapranov AU - O. N. Koroleva AU - A. V. Mazhukin TI - Modification of the Wilson--Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals JO - Matematičeskoe modelirovanie PY - 2023 SP - 103 EP - 121 VL - 35 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/ LA - ru ID - MM_2023_35_11_a7 ER -
%0 Journal Article %A V. I. Mazhukin %A A. V. Shapranov %A O. N. Koroleva %A A. V. Mazhukin %T Modification of the Wilson--Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals %J Matematičeskoe modelirovanie %D 2023 %P 103-121 %V 35 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/ %G ru %F MM_2023_35_11_a7
V. I. Mazhukin; A. V. Shapranov; O. N. Koroleva; A. V. Mazhukin. Modification of the Wilson--Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 103-121. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/
[1] Yip Sidney (ed.), Handbook of Materials Modeling, v. 1, 2, Springer, Berlin–Dordrecht–New York–Heidelberg, 2005
[2] A. L. Pirozerski, O. I. Smirnova, A. I. Nedbai, O. L. Pirozerskaya, N. A. Grunina, V. M. Mikushev, “Peculiarities of melting and crystallization of n-decane in a porous glass”, Phys. Let. A, 383 (2019), 125872 | DOI
[3] J. F. Van der Veen, “Melting and freezing at surfaces”, Surf. Sci, 433-435 (1999), 1–11 | DOI
[4] B. J. Siwick, J. R. Dwyer, R. E. Jordan, R. J.D. Miller, “An Atomic-Level View of Melting Us-ing Femtosecond Electron Diffraction”, Science, 302:5649 (2003), 1382–1385 | DOI
[5] V. I. Mazhukin, “Kinetics and dynamics of phase transformations in metals under action of ultra-short high-power laser pulses”, Laser pulses - theory, technology, and applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 219–276
[6] M. Li, S. Ozawa, K. Kuribayashi, On determining the phase-selection principle in solidification from undercooled melts-competitive nucleation or competitive growth?, Philos. Mag. Let., 84:8 (2004), 483–493 | DOI
[7] Q. S. Mei, K. Lu, “Melting and superheating of crystalline solids: From bulk to nanocrystals”, Prog. Mater. Sci, 52:8 (2007), 1175–1262 | DOI
[8] A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, B. Johansson, “Melting and critical su-perheating”, Phys. Rev. B, 73 (2006), 012201, 3 pp. | DOI
[9] N. A. Berjeza, S. P. Velikevitch, V. I. Mazhukin, I. Smurov, G. Flamant, “Influence of temperature gradient to solidification velocity ratio on the structure transformation in pulsed- and CW-laser surface treatment”, Appl. Surf. Sci, 86:1-4 (1995), 303–309 | DOI
[10] M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plappf, G. Purdy, M. Rappaz, R. Trivedi, “Solidification microstructures and solid-state parallels: Recent developments, future directions. Overview No 146”, Acta Materialia, 57:4 (2009), 941–971 | DOI
[11] P. K. Galenko, D. V. Alexandrov, “From atomistic interfaces to dendritic patterns”, Phil. Trans. R. Soc. A, 376 (2018), 20170210, 9 pp. | DOI | MR
[12] M. V. Shugaev, M. He, S. A. Lizunov, Y. Levy, T. J. Y. Derrien, V. P. Zhukov, N. M. Bulgakova, S. A. Lizunov, L. V. Zhigilei, “Insights into Laser-Materials Interaction Through Modeling on Atomic and Macroscopic Scales”, Springer Series in Materials Science, ed. P. M. Ossi, 2018, 107–148 | DOI
[13] D. V. Sivukhin, Obshchii kurs fiziki, Uch. posob. dlia vuzov v 5 t., v. 2, Termodinamika i molekuliarnaia fizika, Fizmatlit, Izd-vo MFTI, M., 2005
[14] V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, A. A. Aleksashkina, M. M. Demin, “Modeling of non-equilibrium of the melting-crystallization phase transition on the basis of thermal hysteresis of gold and copper”, Math. Montis, 53 (2022), 90–99 | DOI | Zbl
[15] V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, M. M. Demin, A. A. Aleksashkina, “Determination of Thermal Properties of Gold in the Region of Melting-Crystallization Phase Transition: Molecular Dynamics Approach”, Math. Models Comput. Simul., 14:4 (2022), 662–676 | DOI
[16] J. Cheng, Ch. Liu, Sh. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, “A review of ultrafast laser materials micromachining”, Optics Laser Technology, 46 (2013), 88–102 | DOI
[17] J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer”, ACS Nano, 9:3 (2015), 2968–2980 | DOI
[18] V. I. Mazhukin, M. M. Demin, A. V. Shapranov, “High-speed laser ablation of metal with pico- and subpicosecond pulses”, Appl. Surf. Sci, 302 (2014), 6–10 | DOI
[19] M. Cesaria, A. P. Caricato, M. Beccaria, A. Perrone, M. Martino, A. Taurino, M. Catalano, V. Resta, A. Klini, F. Gontad, “Physical insight in the fluence-dependent distributions of Au nanoparticles produced by sub-picosecond UV pulsed laser ablation of a solid target in vacuum environment”, Appl. Surf. Sci, 480 (2019), 330–340 | DOI
[20] A. Mene'ndez-Manjo'n, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, B. N. Chichkov, “Influ-ence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation”, Laser Part. Beams, 28 (2010), 45–52 | DOI
[21] J. H. Perepezko, G. Wilde, “Melt undercooling and nucleation kinetics”, Curr. Opin. Solid State Mater Sci, 20:1 (2016), 3–12 | DOI
[22] V. I. Mazhukin, A. V. Shapranov, A. V. Mazhukin, O. N. Koroleva, “Mathematical formulation of a kinetic version of Stefan problem for heterogeneous melting/crystallization of metals”, Math. Montis, 36 (2016), 58–77 | MR | Zbl
[23] Chen Yu Shen, D. W. Oxtoby, “Density functional theory of crystal growth: Lennard-Jones fluids”, J. Chem. Phys, 104:11 (1996), 4233–4242 | DOI
[24] M. I. Mendelev, M. J. Rahman, J. J. Hoyt, M. Asta, “Molecular-dynamics study of solid-liquid interface migration in fcc metals”, Modeling Simul. Mater. Sci. Eng., 18 (2010), 074002, 18 pp. | DOI
[25] V. I. Mazhukin, A. V. Shapranov, M. M. Demin, N. A. Kozlovskaya, “Temperature dependence of the kinetics rate of the melting and crystallization of aluminum”, Bull. Lebedev Phys. Inst, 43:9 (2016), 283–286 | DOI
[26] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, O. N. Koroleva, A. V. Mazhukin, “Kinetic melting and crystallization stages of strongly superheated and supercooled metals”, Math. Models Comput. Simul, 9:4 (2017), 448–456 | DOI | MR
[27] C. J. Tymczak, J. R. Ray, “Asymmetric Crystallization and Melting Kinetics in Sodium: A Molecular-Dynamics Study”, Phys. Rev. Let, 1990, 1278–1281 | DOI
[28] H. A. Wilson, “On the velocity of solidification and viscosity of supercooled liquids”, Philos. Mag, 50 (1900), 238–250 | DOI
[29] Ja. I. Frenkel, “Note on the relation between the speed of crystallization and viscosity”, Phys. Z. Sowjet Union, 1 (1932), 498–499
[30] J. Frenkel, Kinetic Theory of Solids, Oxford University Press, N.Y., 1946 | MR
[31] J. Q. Broughton, G. H. Gilmer, K. A. Jackson, “Crystallization Rates of a Lennard-Jones Liquid”, Phys. Rev. Let, 49 (1982), 1496–1500 | DOI
[32] K. A. Jackson, “The Interface Kinetics of Crystal Growth Processes”, Interface Sci., 10:2/3 (2002), 159–169 | DOI
[33] L. V. Mikheev, A. A. Chernov, “Mobility of a diffuse simple crystal-melt interface”, J. Crystal Growth, 112:2-3 (1991), 91–596 | DOI
[34] Y. Ashkenazy, R. S. Averback, “Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals”, Acta Materialia, 58 (2010), 524–530 | DOI
[35] D. Turnbull, “On the relation between crystallization rate and liquid structure”, J. Phys. Chem, 62:4 (1962), 609–613 | DOI
[36] Y. Ashkenazy, R. S. Averback, “Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings”, Europhysics Letters (EPL), 79:2 (2007), 26005, 6 pp. | DOI
[37] C. A. MacDonald, A. M. Malvezzi, F. Spaepen, “Picosecond time-resolved measurements of crystallization in noble metals”, JAP, 65:1 (1989), 129–136 | DOI
[38] W. L. Chan, R. S. Averback, D. G. Cahill, Y. Ashkenazy, “Solidification velocities in deeply undercooled silver”, Phys. Rev. Lett., 102:9 (2009), 095701, 4 pp. | DOI
[39] M. I. Mendelev, “Molecular dynamics simulation of solidification and devitrification in a one-component system”, Modelling Simul. Mater. Sci. Eng., 20:4 (2012), 045014, 17 pp. | DOI
[40] M. D. Kluge, J. R. Ray, “Velocity versus temperature relation for solidification and melting of silicon: A molecular-dynamics study”, Phys. Rev. B, 39:3 (1989), 1738–1746 | DOI
[41] K. A. Jackson, B. Chalmers, “Kinetics of solidification”, Can. J. Phys, 34 (1956), 473–490 | DOI
[42] A. A. Samarskii, A. V. Gulin, Chislennye metody, Fizmatlit, M., 1989
[43] V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, K. Nishihara, “Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials”, Appl. Surf. Sci, 255:24 (2009), 9592–9596 | DOI
[44] S. M. Foiles, M. I. Baskes, M. S. Daw, “Embedded-Atom-Method Functions for the Fcc Met-als Cu, Ag, Au, Ni, Pd, Pt and their alloys”, Phys. Rev. B, 33 (1986), 7983–7991 | DOI
[45] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta, “Development of new interatomic potentials appropriate for crystalline and liquid iron”, Philos. Mag, 83:35 (2003), 3977–3994 | DOI
[46] G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev, “Development of an interatomic potential for phosphorus impurities in $\alpha$-iron”, J. Phys. Condens. Matter, 16 (2004), 2629, 14 pp. | DOI
[47] B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S. I. Anisimov, “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation”, Phys. Rev. B, 65 (2002), 092103, 4 pp. | DOI
[48] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, “Matematicheskoe modelirovanie teplofizicheskix svojstv, processov nagreva i plavleniya metallov metodom molekulyarnoj dinamiki”, Math. Montis, 24 (2012), 47–66 | MR
[49] V. I. Mazhukin, A. V. Shapranov, O. N. Koroleva, “Atomistic modeling of crystal-melt interface mobility of fcc (Al, Cu) and bcc (Fe) metals in strong superheating/undercooling states”, Math. Montis, 48 (2020), 70–85 | DOI | MR
[50] V. I. Mazhukin, A. V. Shapranov, A. V. Mazhukin, P. V. Breslavsky, “Atomistic modeling of the dynamics of the solid/liquid interface of Si melting and crystallization taking into account deeply superheated/supercooled states”, Math. Montis, 47 (2020), 87–99 | DOI | MR | Zbl
[51] F. H. Stillinger, T. A. Weber, “Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B, 31:8 (1985), 5262–5271 | DOI
[52] T. Kumagai, S. Izumi, S. Hara, S. Sakai, “Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation”, Comp. Mater. Sci., 39:2 (2007), 457–464 | DOI