Modification of the Wilson--Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals
Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 103-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the kinetic-atomistic approach, a new approach is proposed for constructing the temperature dependence of the stationary velocity of propagation of the solid-liquid interface in metals: aluminum, copper and iron with different crystallographic orientations. The considered temperature range includes the range of maximum allowable overheating/overcooling values for each of the metals. A significant modification of the well-known kinetic model with the Wilson–Frenkel diffusion constraint, which is used to construct the response function, has been made. An atomistic simulation of the processes of melting/crystallization of metals aluminum, copper and iron was carried out over the entire temperature range using three interaction potentials of the "embded atom" family. By comparing the simulation results with the data of the modified kinetic model, the response function of the interface velocity in the range of maximum allowable overheating/overcooling values in metals is constructed using the least squares criterion. The use of the modified Wilson–Frenkel kinetic model in calculations significantly improves the accuracy of the response function over the considered temperature range. The resulting temperature dependence of the interface velocity is diffusion-limited and is described by the same equation for each metal over the considered temperature range.
Keywords: kinetic model, atomistic modeling, velocity of the interface, overheating/overcooling.
Mots-clés : solid–liquid interface
@article{MM_2023_35_11_a7,
     author = {V. I. Mazhukin and A. V. Shapranov and O. N. Koroleva and A. V. Mazhukin},
     title = {Modification of the {Wilson--Frankel} kinetic model and atomistic simulation of the rate of melting/crystallization of metals},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--121},
     publisher = {mathdoc},
     volume = {35},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/}
}
TY  - JOUR
AU  - V. I. Mazhukin
AU  - A. V. Shapranov
AU  - O. N. Koroleva
AU  - A. V. Mazhukin
TI  - Modification of the Wilson--Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 103
EP  - 121
VL  - 35
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/
LA  - ru
ID  - MM_2023_35_11_a7
ER  - 
%0 Journal Article
%A V. I. Mazhukin
%A A. V. Shapranov
%A O. N. Koroleva
%A A. V. Mazhukin
%T Modification of the Wilson--Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals
%J Matematičeskoe modelirovanie
%D 2023
%P 103-121
%V 35
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/
%G ru
%F MM_2023_35_11_a7
V. I. Mazhukin; A. V. Shapranov; O. N. Koroleva; A. V. Mazhukin. Modification of the Wilson--Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 103-121. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a7/

[1] Yip Sidney (ed.), Handbook of Materials Modeling, v. 1, 2, Springer, Berlin–Dordrecht–New York–Heidelberg, 2005

[2] A. L. Pirozerski, O. I. Smirnova, A. I. Nedbai, O. L. Pirozerskaya, N. A. Grunina, V. M. Mikushev, “Peculiarities of melting and crystallization of n-decane in a porous glass”, Phys. Let. A, 383 (2019), 125872 | DOI

[3] J. F. Van der Veen, “Melting and freezing at surfaces”, Surf. Sci, 433-435 (1999), 1–11 | DOI

[4] B. J. Siwick, J. R. Dwyer, R. E. Jordan, R. J.D. Miller, “An Atomic-Level View of Melting Us-ing Femtosecond Electron Diffraction”, Science, 302:5649 (2003), 1382–1385 | DOI

[5] V. I. Mazhukin, “Kinetics and dynamics of phase transformations in metals under action of ultra-short high-power laser pulses”, Laser pulses - theory, technology, and applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 219–276

[6] M. Li, S. Ozawa, K. Kuribayashi, On determining the phase-selection principle in solidification from undercooled melts-competitive nucleation or competitive growth?, Philos. Mag. Let., 84:8 (2004), 483–493 | DOI

[7] Q. S. Mei, K. Lu, “Melting and superheating of crystalline solids: From bulk to nanocrystals”, Prog. Mater. Sci, 52:8 (2007), 1175–1262 | DOI

[8] A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, B. Johansson, “Melting and critical su-perheating”, Phys. Rev. B, 73 (2006), 012201, 3 pp. | DOI

[9] N. A. Berjeza, S. P. Velikevitch, V. I. Mazhukin, I. Smurov, G. Flamant, “Influence of temperature gradient to solidification velocity ratio on the structure transformation in pulsed- and CW-laser surface treatment”, Appl. Surf. Sci, 86:1-4 (1995), 303–309 | DOI

[10] M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plappf, G. Purdy, M. Rappaz, R. Trivedi, “Solidification microstructures and solid-state parallels: Recent developments, future directions. Overview No 146”, Acta Materialia, 57:4 (2009), 941–971 | DOI

[11] P. K. Galenko, D. V. Alexandrov, “From atomistic interfaces to dendritic patterns”, Phil. Trans. R. Soc. A, 376 (2018), 20170210, 9 pp. | DOI | MR

[12] M. V. Shugaev, M. He, S. A. Lizunov, Y. Levy, T. J. Y. Derrien, V. P. Zhukov, N. M. Bulgakova, S. A. Lizunov, L. V. Zhigilei, “Insights into Laser-Materials Interaction Through Modeling on Atomic and Macroscopic Scales”, Springer Series in Materials Science, ed. P. M. Ossi, 2018, 107–148 | DOI

[13] D. V. Sivukhin, Obshchii kurs fiziki, Uch. posob. dlia vuzov v 5 t., v. 2, Termodinamika i molekuliarnaia fizika, Fizmatlit, Izd-vo MFTI, M., 2005

[14] V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, A. A. Aleksashkina, M. M. Demin, “Modeling of non-equilibrium of the melting-crystallization phase transition on the basis of thermal hysteresis of gold and copper”, Math. Montis, 53 (2022), 90–99 | DOI | Zbl

[15] V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, M. M. Demin, A. A. Aleksashkina, “Determination of Thermal Properties of Gold in the Region of Melting-Crystallization Phase Transition: Molecular Dynamics Approach”, Math. Models Comput. Simul., 14:4 (2022), 662–676 | DOI

[16] J. Cheng, Ch. Liu, Sh. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, “A review of ultrafast laser materials micromachining”, Optics Laser Technology, 46 (2013), 88–102 | DOI

[17] J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer”, ACS Nano, 9:3 (2015), 2968–2980 | DOI

[18] V. I. Mazhukin, M. M. Demin, A. V. Shapranov, “High-speed laser ablation of metal with pico- and subpicosecond pulses”, Appl. Surf. Sci, 302 (2014), 6–10 | DOI

[19] M. Cesaria, A. P. Caricato, M. Beccaria, A. Perrone, M. Martino, A. Taurino, M. Catalano, V. Resta, A. Klini, F. Gontad, “Physical insight in the fluence-dependent distributions of Au nanoparticles produced by sub-picosecond UV pulsed laser ablation of a solid target in vacuum environment”, Appl. Surf. Sci, 480 (2019), 330–340 | DOI

[20] A. Mene'ndez-Manjo'n, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, B. N. Chichkov, “Influ-ence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation”, Laser Part. Beams, 28 (2010), 45–52 | DOI

[21] J. H. Perepezko, G. Wilde, “Melt undercooling and nucleation kinetics”, Curr. Opin. Solid State Mater Sci, 20:1 (2016), 3–12 | DOI

[22] V. I. Mazhukin, A. V. Shapranov, A. V. Mazhukin, O. N. Koroleva, “Mathematical formulation of a kinetic version of Stefan problem for heterogeneous melting/crystallization of metals”, Math. Montis, 36 (2016), 58–77 | MR | Zbl

[23] Chen Yu Shen, D. W. Oxtoby, “Density functional theory of crystal growth: Lennard-Jones fluids”, J. Chem. Phys, 104:11 (1996), 4233–4242 | DOI

[24] M. I. Mendelev, M. J. Rahman, J. J. Hoyt, M. Asta, “Molecular-dynamics study of solid-liquid interface migration in fcc metals”, Modeling Simul. Mater. Sci. Eng., 18 (2010), 074002, 18 pp. | DOI

[25] V. I. Mazhukin, A. V. Shapranov, M. M. Demin, N. A. Kozlovskaya, “Temperature dependence of the kinetics rate of the melting and crystallization of aluminum”, Bull. Lebedev Phys. Inst, 43:9 (2016), 283–286 | DOI

[26] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, O. N. Koroleva, A. V. Mazhukin, “Kinetic melting and crystallization stages of strongly superheated and supercooled metals”, Math. Models Comput. Simul, 9:4 (2017), 448–456 | DOI | MR

[27] C. J. Tymczak, J. R. Ray, “Asymmetric Crystallization and Melting Kinetics in Sodium: A Molecular-Dynamics Study”, Phys. Rev. Let, 1990, 1278–1281 | DOI

[28] H. A. Wilson, “On the velocity of solidification and viscosity of supercooled liquids”, Philos. Mag, 50 (1900), 238–250 | DOI

[29] Ja. I. Frenkel, “Note on the relation between the speed of crystallization and viscosity”, Phys. Z. Sowjet Union, 1 (1932), 498–499

[30] J. Frenkel, Kinetic Theory of Solids, Oxford University Press, N.Y., 1946 | MR

[31] J. Q. Broughton, G. H. Gilmer, K. A. Jackson, “Crystallization Rates of a Lennard-Jones Liquid”, Phys. Rev. Let, 49 (1982), 1496–1500 | DOI

[32] K. A. Jackson, “The Interface Kinetics of Crystal Growth Processes”, Interface Sci., 10:2/3 (2002), 159–169 | DOI

[33] L. V. Mikheev, A. A. Chernov, “Mobility of a diffuse simple crystal-melt interface”, J. Crystal Growth, 112:2-3 (1991), 91–596 | DOI

[34] Y. Ashkenazy, R. S. Averback, “Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals”, Acta Materialia, 58 (2010), 524–530 | DOI

[35] D. Turnbull, “On the relation between crystallization rate and liquid structure”, J. Phys. Chem, 62:4 (1962), 609–613 | DOI

[36] Y. Ashkenazy, R. S. Averback, “Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings”, Europhysics Letters (EPL), 79:2 (2007), 26005, 6 pp. | DOI

[37] C. A. MacDonald, A. M. Malvezzi, F. Spaepen, “Picosecond time-resolved measurements of crystallization in noble metals”, JAP, 65:1 (1989), 129–136 | DOI

[38] W. L. Chan, R. S. Averback, D. G. Cahill, Y. Ashkenazy, “Solidification velocities in deeply undercooled silver”, Phys. Rev. Lett., 102:9 (2009), 095701, 4 pp. | DOI

[39] M. I. Mendelev, “Molecular dynamics simulation of solidification and devitrification in a one-component system”, Modelling Simul. Mater. Sci. Eng., 20:4 (2012), 045014, 17 pp. | DOI

[40] M. D. Kluge, J. R. Ray, “Velocity versus temperature relation for solidification and melting of silicon: A molecular-dynamics study”, Phys. Rev. B, 39:3 (1989), 1738–1746 | DOI

[41] K. A. Jackson, B. Chalmers, “Kinetics of solidification”, Can. J. Phys, 34 (1956), 473–490 | DOI

[42] A. A. Samarskii, A. V. Gulin, Chislennye metody, Fizmatlit, M., 1989

[43] V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, K. Nishihara, “Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials”, Appl. Surf. Sci, 255:24 (2009), 9592–9596 | DOI

[44] S. M. Foiles, M. I. Baskes, M. S. Daw, “Embedded-Atom-Method Functions for the Fcc Met-als Cu, Ag, Au, Ni, Pd, Pt and their alloys”, Phys. Rev. B, 33 (1986), 7983–7991 | DOI

[45] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta, “Development of new interatomic potentials appropriate for crystalline and liquid iron”, Philos. Mag, 83:35 (2003), 3977–3994 | DOI

[46] G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev, “Development of an interatomic potential for phosphorus impurities in $\alpha$-iron”, J. Phys. Condens. Matter, 16 (2004), 2629, 14 pp. | DOI

[47] B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S. I. Anisimov, “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation”, Phys. Rev. B, 65 (2002), 092103, 4 pp. | DOI

[48] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, “Matematicheskoe modelirovanie teplofizicheskix svojstv, processov nagreva i plavleniya metallov metodom molekulyarnoj dinamiki”, Math. Montis, 24 (2012), 47–66 | MR

[49] V. I. Mazhukin, A. V. Shapranov, O. N. Koroleva, “Atomistic modeling of crystal-melt interface mobility of fcc (Al, Cu) and bcc (Fe) metals in strong superheating/undercooling states”, Math. Montis, 48 (2020), 70–85 | DOI | MR

[50] V. I. Mazhukin, A. V. Shapranov, A. V. Mazhukin, P. V. Breslavsky, “Atomistic modeling of the dynamics of the solid/liquid interface of Si melting and crystallization taking into account deeply superheated/supercooled states”, Math. Montis, 47 (2020), 87–99 | DOI | MR | Zbl

[51] F. H. Stillinger, T. A. Weber, “Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B, 31:8 (1985), 5262–5271 | DOI

[52] T. Kumagai, S. Izumi, S. Hara, S. Sakai, “Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation”, Comp. Mater. Sci., 39:2 (2007), 457–464 | DOI