Kinetyc viscous shock layer near leading edge of a thin rotating disc
Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 94-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

A regularized problem of describing an irregular nonequilibrium flow of a homogeneous molecular gas in a hypersonic kinetic thin viscous shock layer (kinetic TVSL) near the leading edge of the windward side of a thin rotating disk when it flows around with a finite angle of attack is formulated. It is shown that the friction and heat flow at the leading edge of the rotating disk in the kinetic TVSL coincide, respectively, with similar values in the Navier-Stokes TVSL. A formula for calculating the kinetic pressure at the leading edge of a rotating disk in a kinetic flow is obtained. It is shown that the pressure at the leading edge of the rotating disk in the kinetic TVSL exceeds the pressure at the edge in the Navier-Stokes version of the TVSL. It is shown that taking into account the kinetics of the flow in the flow under study by means of the kinetic approximation of the TVSL affects the pressure (pressure increase) in the region under consideration and does not affect friction and heat exchange on the wall in no way. The proposed mathematical model of the flow in a kinetic TVSL near the edge allows us to obtain an analytical solution of a regularized problem in this area of strong irregularity, which (solution) is also an important attribute of numerical modeling of the TVSL downstream.
Keywords: kinetic thin viscous shock layer (kinetic TVSL), polyatomic gas, nonequilibrium, rotating thin disk, angle of attack, leading edge, correlation of TVSL flows.
@article{MM_2023_35_11_a6,
     author = {A. L. Ankudinov},
     title = {Kinetyc viscous shock layer near leading edge of a thin rotating disc},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {94--102},
     publisher = {mathdoc},
     volume = {35},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a6/}
}
TY  - JOUR
AU  - A. L. Ankudinov
TI  - Kinetyc viscous shock layer near leading edge of a thin rotating disc
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 94
EP  - 102
VL  - 35
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a6/
LA  - ru
ID  - MM_2023_35_11_a6
ER  - 
%0 Journal Article
%A A. L. Ankudinov
%T Kinetyc viscous shock layer near leading edge of a thin rotating disc
%J Matematičeskoe modelirovanie
%D 2023
%P 94-102
%V 35
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a6/
%G ru
%F MM_2023_35_11_a6
A. L. Ankudinov. Kinetyc viscous shock layer near leading edge of a thin rotating disc. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 94-102. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a6/

[1] I. G. Brykina, “Asymptotic solutions of the thin viscous shock layer equations near the symmetry plane of blunt bodies in hypersonic rarefied gas flow”, Fluid Dyn, 46:3 (2011), 444–455 | DOI | MR | Zbl

[2] I. G. Brykina, B. V. Rogov, G. A. Tirsky, S. V. Utyuzhnikov, “The effect of surface curvature on the boundary conditions in the viscous shock layer model for hypersonic rarefied gas flow”, JAMM, 76:6 (2012), 677–687 | MR | Zbl

[3] I. G. Brykina, B. V. Rogov, G. A. Tirsky, V. A. Titarev, S. V. Utyuzhnikov, “A comparative analysis of approaches for investigating hypersonic flow over blunt bodies in a transitional regime”, JAMM, 77:1 (2013), 9–16 | Zbl

[4] I. G. Brykina, “Asymptotic investigation of heat transfer and skin friction in three-dimensional hypersonic rarefied gas flows”, JAMM, 80:3 (2016), 244–256 | MR | Zbl

[5] I. G. Brykina, “Approximate analytical solutions for heat fluxes in three-dimensional hypersonic flow over blunt bodies”, Fluid Dyn, 52:4 (2017), 572–586 | DOI | DOI | MR | Zbl

[6] S. Noori, S. Ghasemloo, M. Mani, “Viscous Shock Layer Around Slender Bodies with Non-equilibrium Air Chemistry”, Iranian J. of Sci. Technology. Transactions of Mech. Eng.; Shiraz University, 41:4 (2017), 251–264 | DOI

[7] M. M. Kuznetsov, V. S. Nikolskii, “Kineticheskii analiz giperzvukovykh viazkikh techenii mnogoatomnogo gaza v tonkom trekhmernom udarnom sloe”, Uch. zapiski TsAGI, 16:3 (1985), 38–49

[8] V. S. Nikolskii, “Kineticheskaia model giperzvukovykh techenii razrezhennogo gaza”, Matematicheskoe modelirovanie, 8:12 (1996), 29–46 | MR | Zbl

[9] M. M. Kuznetsov, I. I. Lipatov, V. S. Nikolsky, “Rheology of rarefied gas flow in hypersonic shock and boundary layers”, Fluid Dyn, 42:5 (2007), 851–857 | DOI | Zbl

[10] H. K. Cheng, C. J. Lee, E. Y. Wong, H. T. Yang, Hypersonic slip flows and issues on extending continuum model beyond the Navier-Stokes level, AIAA Paper 89–1663, 1989

[11] H. K. Cheng, E. Y. Wong, V. K. Dogra, A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic flows, AIAA Paper 91–0783, 1991