Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_11_a5, author = {E. N. Aristova and G. O. Astafurov}, title = {A third-order projection-characteristic method for solving the transport equation on unstructed grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {79--93}, publisher = {mathdoc}, volume = {35}, number = {11}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a5/} }
TY - JOUR AU - E. N. Aristova AU - G. O. Astafurov TI - A third-order projection-characteristic method for solving the transport equation on unstructed grids JO - Matematičeskoe modelirovanie PY - 2023 SP - 79 EP - 93 VL - 35 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a5/ LA - ru ID - MM_2023_35_11_a5 ER -
%0 Journal Article %A E. N. Aristova %A G. O. Astafurov %T A third-order projection-characteristic method for solving the transport equation on unstructed grids %J Matematičeskoe modelirovanie %D 2023 %P 79-93 %V 35 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a5/ %G ru %F MM_2023_35_11_a5
E. N. Aristova; G. O. Astafurov. A third-order projection-characteristic method for solving the transport equation on unstructed grids. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 79-93. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a5/
[1] A. V. Shilkov, “Generalized Multigroup Approximation and Lebesgue Averaging Method in Particle Transport Problems”, Transp. Theory Stat. Physics, 23:6 (1994), 781–814 | DOI | MR | Zbl
[2] E. N. Aristova, M. N. Gertsev, A. V. Shilkov, “Lebesgue averaging method in serial computations of atmospheric radiation”, Comp. Math. Math. Phys., 57:6 (2017), 1022–1035 | DOI | MR | Zbl
[3] S. Ii, F. Xiao, “CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation”, J. of Comp. Physics, 222:2 (2007), 849–871 | DOI | MR | Zbl
[4] S. Ii, M. Shimuta, F. Xiao, “A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments”, Comp. Phys. Commun., 173:1-2 (2005), 17–33 | DOI | Zbl
[5] E. N. Aristova, G. O. Astafurov, “Second-order short characteristic method for solving the transport equation on a tetrahedron mesh”, MM CS, 9:1 (2017), 40–47 | MR | Zbl
[6] E. N. Aristova, G. O. Astafurov, “Characteristic Scheme for the Solution of the Transport Equation on an Unstructured Grid with Barycentric Interpolation”, Mathematical Models and Computer Simulations, 11:3 (2019), 349–359 | DOI | DOI | MR
[7] T. Yabe, T. Aoki, G. Sakaguchi, “The compact CIP (cubic-interpolated pseudo-particle) method as a general hyperbolic solver”, Computers Fluids, 19:3/4 (1991), 421–431 | DOI | MR | Zbl
[8] T. L. Tsai. S.W. Chiang, J. G. Yang, “Characteristics method with cubic-spline interpolation for open channel flow computation”, Int. J. Numerical Methods in Fluids, 46 (2004), 663–683 | DOI | Zbl
[9] T. Yabe, F. Xiao, T. Utsumi, “The constrained interpolation profile method for multiphase analysis”, Journal of Computational Physics, 169:2 (2001), 556–593 | DOI | MR | Zbl
[10] T. Aoki, “Stability and accuracy of the cubic interpolated propagation scheme”, Comput. Phys. Commun., 101:1-2 (1997), 9–20 | DOI
[11] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Compact grid-characteristic schemes of higher orders of accuracy for a 3D linear transport equation”, Mathematical Models and Computer Simulations, 8:5 (2016), 557–584 | DOI | MR | MR
[12] Jianxian Qiu, Chi-Wang Shu, “Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case”, Journal of Computational Physics, 193:1 (2003), 115–135 | MR
[13] E. N. Aristova, G. O. Astafurov, “Comparison of Dissipation and Dispersion Properties of Compact Difference Schemes for the Numerical Solution of the Advection Equation”, Computational Mathematics and Mathematical Physics, 61:11 (2021), 1711–1722 | DOI | DOI | MR
[14] Bahareh Banijamali, Klaus-Jurgen Bathe, “The CIP method embedded in finite element discretizations of incompressible fluid flows”, Int. J. Num. Meth. Eng., 71:1 (2007), 66–80 | DOI | MR | Zbl
[15] T. Yabe, K. Takizawa, M. Chino, M. Imai, C.C. Chu, “Challenge of CIP as a universal solver for solid, liquid and gas”, Int. J. Numer. Meth. Fluids, 47:6-7 (2005), 655–676 | DOI | Zbl
[16] R. Akoh, S. Ii, F. Xiao, “A CIP/multi-moment finite volume method for shallow water equations with source terms”, Int. J. Numer. Meth. Fluids, 56:12 (2008), 2245–2270 | DOI | MR | Zbl
[17] Takashi Yabe, Youichi Ogata, “A multidimensional approach to rarefied and transitional flows with the CIP method”, Int. J. Numer. Meth. Fluids, 65:1–3 (2011), 191–206 | MR | Zbl
[18] F. Xiao, T. Yabe, T. Ito, “Constructing oscillation preventing scheme for advection equation by rational function”, Computer Physics Communications, 93:1 (1996), 1–12 | DOI | Zbl
[19] F. Xiao, T. Yabe, G. Nizam, T. Ito, “Constructing a multi-dimensional oscillation preventing scheme for the advection equation by a rational function”, Computer Physics Communications, 94:2–3 (1996), 103–118 | DOI | Zbl
[20] Takayuki Utsumi, James Koga, “New numerical method for the solutions of the MCDF equations based on the CIP method”, Comp. Phys. Commun., 148:3 (2002), 281–290 | DOI | MR | Zbl
[21] Takayuki Utsumi, James Koga, “Accurate numerical method for the solutions of the Schrodinger equation and the radial integrals based on the CIP method”, Comp. Physics Communications, 148:3 (2002), 267–280 | DOI | MR | Zbl
[22] I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, “Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves”, Computational Mathematics and Mathematical Physics, 57:11 (2017), 1771–1777 | DOI | DOI | MR | Zbl
[23] Anja Drews, Thorsten Klahm, Berit Red, Mahmut Saygilib, Goetz Baumgartenc, Matthias Kraume, “Nanofiltration of CIP waters from iodine X-ray contrast media production: process design and modelling”, Desalination, 159:2 (2003), 119–129 | DOI
[24] E. N. Aristova, G. I. Ovcharov, “Hermitian Characteristic Scheme for a Linear Inhomogeneous Transfer Equation”, Math. Models Comp. Simul., 12:6 (2020), 845–855 | DOI | DOI | MR | MR | Zbl
[25] B. V. Rogov, M. N. Mikhailovskaya, “Fourth-order accurate bicompact schemes for hyperbolic equations”, Doklady Mathematics, 81 (2010), 146–150 | DOI | MR | Zbl
[26] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic Bicompact Schemes for Linear Transport Equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl
[27] B. V. Rogov, M. N. Mikhailovskaya, “Monotone compact running schemes for systems of hyperbolic equations”, Comp. Math. and Math. Physics, 52:4 (2012), 578–600 | DOI | MR | MR | Zbl
[28] E. N. Aristova, B. V. Rogov, “Boundary Conditions Implementation in Bicompact Schemes for the Linear Transport Equation”, Math. Models Comp. Simul., 5:3 (2013), 199–207 | DOI | MR | Zbl
[29] E. N. Aristova, B. V. Rogov, “Bicompact scheme for the multidimensional stationary linear transport equation”, Appl. Numer. Math., 93 (2015), 3–14 | DOI | MR | Zbl
[30] E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 962–976 | DOI | DOI | MR | Zbl
[31] A. V. Chikitkin, B. V. Rogov, “Family of central bicompact schemes with spectral resolution property for hyperbolic equations”, Applied Numer. Mathematics, 142 (2019), 151–170 | DOI | MR | Zbl
[32] G. O. Astafurov, Postroenie i issledovanie metoda CPP (Cubic Polynomial Projection) resheniia uravneniia perenosa, Preprinty IPM im. M.V. Keldysha, 2022, 56 pp.
[33] O. V. Nikolaeva, “Nodal Scheme for the Radiation Transport Equation on an Unstructured Tetrahedral Mesh”, Math. Models and Comp. Simulations, 7:6 (2015), 581–592 | DOI | MR | Zbl
[34] E. N. Aristova, G. O. Astafurov, “On the Influence on the Accuracy of Cubature Formulas on the Integral Characteristics of Solutions of the Transport Equation”, Math. Models and Comput. Simul., 12:5 (2020), 685–695 | DOI | DOI | MR | Zbl
[35] G. O. Astafurov, “Algoritm obkhoda iacheek v kharakteristicheskikh metodakh resheniia uravneniia perenosa”, Preprinty IPM im. Keldysha, 2018, 193, 24 pp.
[36] J. H. Bramble, S. R. Hilbert, “Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation”, SIAM J. Num. Anal., 7 (1970), 112–124 | DOI | MR | Zbl