Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_11_a4, author = {B. V. Semisalov}, title = {On a scenario of transition to turbulence for polymer fluid flow in a circular pipe}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {62--78}, publisher = {mathdoc}, volume = {35}, number = {11}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a4/} }
B. V. Semisalov. On a scenario of transition to turbulence for polymer fluid flow in a circular pipe. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 62-78. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a4/
[1] B. Eckhardt, T. M. Schneider, B. Hof, J. Westerweel, “Turbulence transition in pipe flow”, Annu. Rev. Fluid Mech., 39 (2007), 447–468 | DOI | MR | Zbl
[2] K. I. Babenko, V. A. Stebunov, O spektral'noj zadache Orra-Zommerfel'da, preprint No 93, In. prikl. matem., M., 1975, 34 pp.
[3] H. Wedin, R. R. Kerswell, “Exact coherent structures in pipe flow: travelling wave solutions”, J. Fluid Mech., 508 (2004), 333–371 | DOI | MR | Zbl
[4] A. Meseguer, L. N. Trefethen, “Linearized pipe flow to Reynolds number $10^7$”, J. of comp. phys., 186 (2003), 178–197 | DOI | MR | Zbl
[5] K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, B. Hof, “The onset of turbulence in pipe flow”, Science, 333 (2011), 192–196 | DOI | MR | Zbl
[6] A. E. Trefethen, L. N. Trefethen, P. J. Schmid, “Spectra and pseudospectra for pipe Poiseuille flow”, Comput. Methods Appl. Mech. Engrg., 1926 (1999), 413–420 | DOI | MR
[7] G. H. McKinley, P. Pakdel, A. Oztekin, “Rheological and geometric scaling of purely elastic flow instabilities”, J. Non-Newtonian Fluid Mech., 67 (1996), 19–47 | DOI
[8] P. Garg, I. Chaudhary, M. Khalid, V. Shankar, G. Subramanian, “Viscoelastic pipe flow is linearly unstable”, Phys. Rev. Lett., 121:024502 (2018) | Zbl
[9] J. Page, Y. Dubief, R. R. Kerswell, “Exact traveling wave solutions in viscoelastic channel flow”, Phys. Rev. Lett., 125 (2020), 154501 | DOI | MR
[10] M. Zhang, “Energy growth in subcritical viscoelastic pipe flows”, Journal of Non-Newtonian Fluid Mechanics, 294 (2021), 104581 | DOI | MR
[11] G. H. Choueiri, J. M. Lopez, A. Varshney, S. Sankar, B. Hof, “Experimental observation of the origin and structure of elasto-inertial turbulence”, Proc. Natl. Acad. Sci. USA, 118:45 (2021), e2102350118 | DOI
[12] J. Page, T. A. Zaki, “Streak evolution in viscoelastic Couette flow”, J. of Fluid Mech., 742:10 (2014), 520–551 | DOI | MR
[13] M. R. Jovanovic, S. Kumar, “Transient growth without inertia”, Physics of Fluids, 22 (2010), 023101 | DOI | Zbl
[14] S. S. Datta et al, “Perspectives on viscoelastic flow instabilities and elastic turbulence”, Phys. Rev. Fluids, 7 (2022), 080701 | DOI
[15] G. V. Vinogradov, V. H. Pokrovsky, Yu. G. Yanovsky, “Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification”, Rheol. Acta, 11:3-4 (1972), 258–274 | DOI
[16] V. N. Pokrovskii, Yu. A. Altukhov, G. V. Pyshnograi, “The mesoscopic approach to the dynamics of polymer melts: consequences for the constitutive equation”, J. Non-Newton Fluid Mech., 76:1-3 (1998), 153–181 | DOI | Zbl
[17] Yu. A. Altuhov, A. S. Gusev, G. V. Pyshnograj, Vvedenie v mezoskopicheskuyu teoriyu tekuchesti polimernyh sistem, Izd-vo AltGPA, Barnaul, 2012, 121 pp.
[18] Y. L. Kuznetsova, O. I. Skul'skiy, “Effect of different flows on the shear branding of a liquid with a non-monotonic flow curve”, J. of Appl. Mech. and Tech. Phys., 60:1 (2019), 22–30 | DOI | MR | Zbl
[19] K. B. Koshelev, G. V. Pyshnograi, M. Yu. Tolstykh, “Modeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section”, Fluid Dynamics, 50 (2015), 315–532 | DOI | MR
[20] A. M. Blokhin, D. L. Tkachev, “Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls”, Sb. Math., 213:3 (2022), 283–299 | DOI | DOI | MR | Zbl
[21] A. M. Blokhin, B. V. Semisalov, “Simulation of the Stationary Nonisothermal MHD Flows of Polymeric Fluids in Channels with Interior Heating Elements”, J. of Appl. and Industr. Math., 14:2 (2020), 222–241 | DOI | MR | Zbl
[22] J. G. Oldroyd, “On the formulation of rheological equations of state”, Proc. of the Royal Society of London. Ser. A. Math. and Phys. Sci., 200:1063 (1950), 523–541 | MR | Zbl
[23] H. Giesekus, “A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility”, J. Non-Newtonian Fluid Mech., 11:1-2 (1982), 69–109 | DOI | Zbl
[24] A. M. Blokhin, B. V. Semisalov, “Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method”, Comp. math. and math. phys., 62:2 (2022), 302–315 | DOI | DOI | MR
[25] A. M. Blokhin, B. V. Semisalov, “Numerical simulation of a stabilizing Poiseuille-type polymer fluid flow in the channel with elliptical cross-section”, Journal of Phys.: Conf. Ser., 2099 (2021), 012014 | DOI | MR
[26] B. V. Semisalov, “Bystryj nelokal'nyj algoritm resheniya kraevyh zadach Nejmana-Dirihle s kontrolem pogreshnosti”, Vych. met. progr., 17:4 (2016), 500–522
[27] W. M. Gentleman, “Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation”, Commun. of the ACM, 15:5 (1972), 343–346 | DOI | MR | Zbl