On a scenario of transition to turbulence for polymer fluid flow in a circular pipe
Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 62-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations describing non-stationary and stationary flows of an incompressible polymer fluid through a pipe are derived on the basis of rheological mesoscopic Pokrovskii–Vinogradov model. Exact stationary solutions of them are obtained, and conditions providing their existence are outlined. Numerical simulation of stabilization of non-stationary flow is done, as well, and the restrictions on the values of parameters that ensure stabilization are computed. In a number of cases these restrictions coincide with the conditions of existence of stationary solutions. The obtained results enable one to describe constructively the process of destruction of laminar Poiseuille-type flows, which usually initiates onset of turbulence. The key role in mechanics of this process is played by the size and orientation of macromolecules of the polymer fluid. Mathematical description of the process uses essentially the solutions' singular points.
Keywords: polymer fluid, mesoscopic model, stabilization of non-stationary flow, singular point of solution.
Mots-clés : Poiseuille-type flow, exact solution, laminar-turbulent transition
@article{MM_2023_35_11_a4,
     author = {B. V. Semisalov},
     title = {On a scenario of transition to turbulence for polymer fluid flow in a circular pipe},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {62--78},
     publisher = {mathdoc},
     volume = {35},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_11_a4/}
}
TY  - JOUR
AU  - B. V. Semisalov
TI  - On a scenario of transition to turbulence for polymer fluid flow in a circular pipe
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 62
EP  - 78
VL  - 35
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_11_a4/
LA  - ru
ID  - MM_2023_35_11_a4
ER  - 
%0 Journal Article
%A B. V. Semisalov
%T On a scenario of transition to turbulence for polymer fluid flow in a circular pipe
%J Matematičeskoe modelirovanie
%D 2023
%P 62-78
%V 35
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_11_a4/
%G ru
%F MM_2023_35_11_a4
B. V. Semisalov. On a scenario of transition to turbulence for polymer fluid flow in a circular pipe. Matematičeskoe modelirovanie, Tome 35 (2023) no. 11, pp. 62-78. http://geodesic.mathdoc.fr/item/MM_2023_35_11_a4/

[1] B. Eckhardt, T. M. Schneider, B. Hof, J. Westerweel, “Turbulence transition in pipe flow”, Annu. Rev. Fluid Mech., 39 (2007), 447–468 | DOI | MR | Zbl

[2] K. I. Babenko, V. A. Stebunov, O spektral'noj zadache Orra-Zommerfel'da, preprint No 93, In. prikl. matem., M., 1975, 34 pp.

[3] H. Wedin, R. R. Kerswell, “Exact coherent structures in pipe flow: travelling wave solutions”, J. Fluid Mech., 508 (2004), 333–371 | DOI | MR | Zbl

[4] A. Meseguer, L. N. Trefethen, “Linearized pipe flow to Reynolds number $10^7$”, J. of comp. phys., 186 (2003), 178–197 | DOI | MR | Zbl

[5] K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, B. Hof, “The onset of turbulence in pipe flow”, Science, 333 (2011), 192–196 | DOI | MR | Zbl

[6] A. E. Trefethen, L. N. Trefethen, P. J. Schmid, “Spectra and pseudospectra for pipe Poiseuille flow”, Comput. Methods Appl. Mech. Engrg., 1926 (1999), 413–420 | DOI | MR

[7] G. H. McKinley, P. Pakdel, A. Oztekin, “Rheological and geometric scaling of purely elastic flow instabilities”, J. Non-Newtonian Fluid Mech., 67 (1996), 19–47 | DOI

[8] P. Garg, I. Chaudhary, M. Khalid, V. Shankar, G. Subramanian, “Viscoelastic pipe flow is linearly unstable”, Phys. Rev. Lett., 121:024502 (2018) | Zbl

[9] J. Page, Y. Dubief, R. R. Kerswell, “Exact traveling wave solutions in viscoelastic channel flow”, Phys. Rev. Lett., 125 (2020), 154501 | DOI | MR

[10] M. Zhang, “Energy growth in subcritical viscoelastic pipe flows”, Journal of Non-Newtonian Fluid Mechanics, 294 (2021), 104581 | DOI | MR

[11] G. H. Choueiri, J. M. Lopez, A. Varshney, S. Sankar, B. Hof, “Experimental observation of the origin and structure of elasto-inertial turbulence”, Proc. Natl. Acad. Sci. USA, 118:45 (2021), e2102350118 | DOI

[12] J. Page, T. A. Zaki, “Streak evolution in viscoelastic Couette flow”, J. of Fluid Mech., 742:10 (2014), 520–551 | DOI | MR

[13] M. R. Jovanovic, S. Kumar, “Transient growth without inertia”, Physics of Fluids, 22 (2010), 023101 | DOI | Zbl

[14] S. S. Datta et al, “Perspectives on viscoelastic flow instabilities and elastic turbulence”, Phys. Rev. Fluids, 7 (2022), 080701 | DOI

[15] G. V. Vinogradov, V. H. Pokrovsky, Yu. G. Yanovsky, “Theory of viscoelastic behaviour of linear polymers in unimolecular approximation and its experimental verification”, Rheol. Acta, 11:3-4 (1972), 258–274 | DOI

[16] V. N. Pokrovskii, Yu. A. Altukhov, G. V. Pyshnograi, “The mesoscopic approach to the dynamics of polymer melts: consequences for the constitutive equation”, J. Non-Newton Fluid Mech., 76:1-3 (1998), 153–181 | DOI | Zbl

[17] Yu. A. Altuhov, A. S. Gusev, G. V. Pyshnograj, Vvedenie v mezoskopicheskuyu teoriyu tekuchesti polimernyh sistem, Izd-vo AltGPA, Barnaul, 2012, 121 pp.

[18] Y. L. Kuznetsova, O. I. Skul'skiy, “Effect of different flows on the shear branding of a liquid with a non-monotonic flow curve”, J. of Appl. Mech. and Tech. Phys., 60:1 (2019), 22–30 | DOI | MR | Zbl

[19] K. B. Koshelev, G. V. Pyshnograi, M. Yu. Tolstykh, “Modeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section”, Fluid Dynamics, 50 (2015), 315–532 | DOI | MR

[20] A. M. Blokhin, D. L. Tkachev, “Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls”, Sb. Math., 213:3 (2022), 283–299 | DOI | DOI | MR | Zbl

[21] A. M. Blokhin, B. V. Semisalov, “Simulation of the Stationary Nonisothermal MHD Flows of Polymeric Fluids in Channels with Interior Heating Elements”, J. of Appl. and Industr. Math., 14:2 (2020), 222–241 | DOI | MR | Zbl

[22] J. G. Oldroyd, “On the formulation of rheological equations of state”, Proc. of the Royal Society of London. Ser. A. Math. and Phys. Sci., 200:1063 (1950), 523–541 | MR | Zbl

[23] H. Giesekus, “A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility”, J. Non-Newtonian Fluid Mech., 11:1-2 (1982), 69–109 | DOI | Zbl

[24] A. M. Blokhin, B. V. Semisalov, “Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method”, Comp. math. and math. phys., 62:2 (2022), 302–315 | DOI | DOI | MR

[25] A. M. Blokhin, B. V. Semisalov, “Numerical simulation of a stabilizing Poiseuille-type polymer fluid flow in the channel with elliptical cross-section”, Journal of Phys.: Conf. Ser., 2099 (2021), 012014 | DOI | MR

[26] B. V. Semisalov, “Bystryj nelokal'nyj algoritm resheniya kraevyh zadach Nejmana-Dirihle s kontrolem pogreshnosti”, Vych. met. progr., 17:4 (2016), 500–522

[27] W. M. Gentleman, “Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation”, Commun. of the ACM, 15:5 (1972), 343–346 | DOI | MR | Zbl