Accuracy evaluation of modern effective codes by comparing calculated and experimental data on the example of problem about supersonic viscous turbulent gas flow around the tandem of back-forcing and forward-forcing steps
Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 69-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of various program codes for the investigation of the viscous turbulent compressible gas flow around complicated configurations is presented. A series of test calculations for a tandem of 3D back-forcing and forward-forcing steps has been performed. The purpose of the calculations is to analyze the resolution accuracy of the separation zones using classical and modern methods. To achieve the goal, the physical features of the flow are described and the comparison of results obtained using different codes in the frame of back-forcing and forward-forcing steps tandem test case is done.
Keywords: supersonic flow, IDDES, tandem of steps, return flow, shock, separation point, attachment point, comparison of numerical and experimental results, accuracy.
Mots-clés : RANS, LES, rarefaction, compression
@article{MM_2023_35_10_a4,
     author = {S. M. Bosnyakov and M. E. Berezko and Yu. N. Deryugin and A. P. Duben and R. N. Zhuchkov and A. S. Kozelkov and T. K. Kozubskaya and S. V. Matyash and S. V. Mikhailov and M. K. Okulov and V. A. Talyzin and A. A. Utkina and N. A. Kharchenko and V. I. Shevyakov},
     title = {Accuracy evaluation of modern effective codes by comparing calculated and experimental data on the example of problem about supersonic viscous turbulent gas flow around the tandem of back-forcing and forward-forcing steps},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--112},
     publisher = {mathdoc},
     volume = {35},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_10_a4/}
}
TY  - JOUR
AU  - S. M. Bosnyakov
AU  - M. E. Berezko
AU  - Yu. N. Deryugin
AU  - A. P. Duben
AU  - R. N. Zhuchkov
AU  - A. S. Kozelkov
AU  - T. K. Kozubskaya
AU  - S. V. Matyash
AU  - S. V. Mikhailov
AU  - M. K. Okulov
AU  - V. A. Talyzin
AU  - A. A. Utkina
AU  - N. A. Kharchenko
AU  - V. I. Shevyakov
TI  - Accuracy evaluation of modern effective codes by comparing calculated and experimental data on the example of problem about supersonic viscous turbulent gas flow around the tandem of back-forcing and forward-forcing steps
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 69
EP  - 112
VL  - 35
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_10_a4/
LA  - ru
ID  - MM_2023_35_10_a4
ER  - 
%0 Journal Article
%A S. M. Bosnyakov
%A M. E. Berezko
%A Yu. N. Deryugin
%A A. P. Duben
%A R. N. Zhuchkov
%A A. S. Kozelkov
%A T. K. Kozubskaya
%A S. V. Matyash
%A S. V. Mikhailov
%A M. K. Okulov
%A V. A. Talyzin
%A A. A. Utkina
%A N. A. Kharchenko
%A V. I. Shevyakov
%T Accuracy evaluation of modern effective codes by comparing calculated and experimental data on the example of problem about supersonic viscous turbulent gas flow around the tandem of back-forcing and forward-forcing steps
%J Matematičeskoe modelirovanie
%D 2023
%P 69-112
%V 35
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_10_a4/
%G ru
%F MM_2023_35_10_a4
S. M. Bosnyakov; M. E. Berezko; Yu. N. Deryugin; A. P. Duben; R. N. Zhuchkov; A. S. Kozelkov; T. K. Kozubskaya; S. V. Matyash; S. V. Mikhailov; M. K. Okulov; V. A. Talyzin; A. A. Utkina; N. A. Kharchenko; V. I. Shevyakov. Accuracy evaluation of modern effective codes by comparing calculated and experimental data on the example of problem about supersonic viscous turbulent gas flow around the tandem of back-forcing and forward-forcing steps. Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 69-112. http://geodesic.mathdoc.fr/item/MM_2023_35_10_a4/

[1] A. A. Zheltovodov, L. Ch. Iu. Mekler, E. Kh. Shilein, Osobennosti razvitiia otryvnykh techenii v uglakh szhatiia za volnami razrezheniia, preprint No 10, ITPM SO AN SSSR, Novosibirsk, 1987, 87 pp.

[2] S. M. Bosnyakov, A. P. Duben, A. A. Zheltovodov, T. K. Kozubskaya, S. V. Matyash, S. V. Mikhailov, “Numerical Simulation of Supersonic Separated Flow over Inclined Backward-Facing Step Using RANS and LES Methods”, Mathematical Models and Computer Simulations, 12:4 (2020), 453–463 | DOI | DOI | MR | Zbl

[3] J. Fang, Y. Yao, A. Zheltovodov, Z. Li, L. Lu, “Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner”, Physics of Fluids, 27 (2015), 125104 | DOI

[4] A. A. Babukin, S. M. Bosnyakov, V. V. Vlasenko, M. F. Engulatova, S. V. Matyash, S. V. Mikhailov, “Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 1020–1033 | DOI | DOI | MR | Zbl

[5] I. I. Volonikhin, V. D. Grigorev, V. S. Demianenko, Kh. I. Pisarenko, A. M. Kharitonov, “Sverkhzvukovaia aerodinamicheskaia truba T-313”, Sb. nauchnykh trudov ITPM SO AN SSSR: Aerofizicheskie issledovaniia, Novosibirsk, 1972, 8–11

[6] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Numerical methods and programming, 13:3 (2012), 110–125

[7] E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “Assessment of Delayed DES and Improved Delayed DES Combined with a Shear-Layer-Adapted Subgrid Length-Scale in Separated Flows”, Flow, Turbulence and Combustion, 98:2 (2017), 481–502 | DOI | MR

[8] P. R. Spalart, S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows”, Recherche Aerospatiale, 1994, no. 1, 5–21

[9] F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, Heat and Mass Transfer 4, eds. K. Hanjalic, Y. Nagano, M. Tummers, Begell House, Inc., 2003, 625–632

[10] A. P. Duben, T. K. Kozubskaya, “Evaluation of Quasi-One-Dimensional Unstructured Method for Jet Noise Prediction”, AIAA J., 57:12, August 28 (2019), 5142–5155 | DOI | MR

[11] P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR

[12] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comput. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl

[13] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust, 93:1 (2014), 63–92 | DOI

[14] A. V. Struchkov, A. S. Kozelkov, K. Volkov, A. A. Kurkin, R. N. Zhuchkov, A. V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 | DOI

[15] Yu. N. Deryugin, A. V. Sarazov, R. N. Zhuchkov, “Specific features of the chimera calculation methodology implemented for unstructured grids”, Mathematical Model and Computer Simulations, 9:5 (2017), 587–597 | DOI | MR

[16] M.A. Pogosian (red.), Tsifrovye tekhnologii v zhiznennom tsikle rossiiskoi aviatsionnoi tekhniki, Monografiia, Izd-vo MAI, M., 2020, 448 pp.

[17] Yu. N. Deryugin, R. N. Zhuchkov, D. K. Zelenskiy, A. S. Kozelkov, A. V. Sarazov, N. F. Kudimov, Yu. M. Lipnickiy, A. V. Panasenko, A. V. Safronov, “Validation Results for the LOGOS Multifunction Software Package in Solving Problems of Aerodynamics and Gas Dynamics for the Lift-Off and Injection of Launch Vehicles”, Mathematical Models and Computer Simulations, 7:2 (2015), 144–153 | DOI | MR | Zbl

[18] J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, P. Bradshaw, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, 33:9 (1995), 1561–1568 | DOI

[19] D. N. Smolkina, O. N. Borisenko, M. V. Cherenkova, A. G. Giniiatullina, M. V. Kuzmenko, N. V. Chukhmanov, E. V. Potekhina, N. V. Popova, M. R. Turusov, “Avtomaticheskii generator nestrukturirovannykh mnogogrannykh setok v preprotsessore paketa programm «LOGOS»”, VANT. Seriia: Matem. modelirovanie fizicheskikh protsessov, 2018, no. 2, 25–39

[20] O. A. Bessonov, N. A. Kharchenko, “Programmnaia platforma dlia superkompiuternogo modelirovaniia zadach aerotermodinamiki”, Programmnaia inzheneriia, 12:6 (2021), 302–310 | MR

[21] N. Kharchenko, M. Kotov, “Aerothermodynamics of the Apollo-4 spacecraft at earth atmosphere conditions with speed more than 10 km/s”, J. Phys.: Conf. Ser., 1250 (2019), 10 | DOI

[22] N. A. Kharchenko, N. A. Nosenko, “Chislennoe modelirovanie obtekaniia vysokoskorostnym potokom tsilindricheski-konicheskogo tela i dvoinogo konusa”, Matematicheskoe modelirovanie i chislennye metody, 2022, no. 3, 14

[23] ANSYS Fluent User's Guide, Release 2021 R1, ANSYS, Inc., January 2021

[24] M. L. Shur, M. K. Strelets, A. K. Travin, P. R. Spalart, “Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction”, AIAA Journal, 38:5 (2000) | DOI

[25] P. E. Smirnov, F. R. Menter, Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term, ASME Paper GT 2008–50480, Berlin, Germany, 2008

[26] FlowVision, Rukovodstvo polzovatelia. Versiia 3.12.05, OOO “TESIS”, M., 2021

[27] “Prakticheskie aspekty resheniia zadach vneshnei i vnutrennei aerodinamiki s primeneniem tekhnologii ZEUS v ramkakh paketa EWT-TsAGI”, Sb. statei, Trudy TsAGI, 2735, 2015

[28] A. V. Garbaruk, M. Kh. Strelets, A. K. Travin, M. L. Shur, Sovremennye podkhody k modelirovaniiu turbulentnosti, Iz-vo Politekhnicheskogo universiteta, Sankt-Peterburg, 2016

[29] R. D. Cecora, B. Eisfeld, A. Probst, S. Crippa, R. Radespiel, Differential Reynolds Stress Modeling for Aeronautics, AIAA Paper 2012–0465, 2012

[30] R. D. Cecora, R. Radespiel, B. Eisfeld, A. Probst, “Differential Reynolds-Stress Modeling for Aeronautics”, AIAA Journal, 53:3 (2015), 739–755 | DOI

[31] S. Bakhne, A. V. Volkov, I. S. Matiash, S. V. Matiash, A. I. Troshin, “Metod rascheta otryvnykh techenii klassa IDDES na osnove modeli turbulentnosti DRSM”, Materialy dokladov konferentsii «XXVI Vserossiiskii seminar s mezhdunarodnym uchastiem po struinym, otryvnym i nestatsionarnym techeniiam», S.-P., 2022

[32] S. Bakhne, A. V. Volkov, I. S. Matiash, S. V. Matiash, A. I. Troshin, “Testirovanie metoda rascheta otryvnykh techenii na osnove podkhoda IDDES i modeli turbulentnosti klassa DRSM”, Sbornik tezisov «Vychislitelnyi eksperiment v aeroakustike i aerodinamike» (g. Svetlogorsk, Kaliningradskaia obl., 2022)

[33] E. K. Guseva, A. V. Garbaruk, M. Kh. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, J. Phys.: Conf. Ser., 929 (2017), 012099 | DOI

[34] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turb. Combust, 95:4 (2015), 709–737 | DOI