Automatic block-structured grid generation in turbo machine blade passages by TurboR\ software
Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 53-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes the methodology of generating block-structured computational grids for turbomachine blade passages implemented in the TurboR software. The basis of grid generation process is the variational method. The combination of the energy density functional and cell size functional is used. In order to speed up the process of grid generation a multigrid approach is applied. An algorithm for constructing a block topology in the blade passages is proposed, which takes several spanwise sections of the blade into account simultaneously. To create a block topology of axisymmetric effects a medial axis based method is used. Main features of the software are discussed, the presented results demonstrate high quality of the grids generated in a fully automatic mode.
Keywords: automatic grid generator, block-structured grids
Mots-clés : turbomachines.
@article{MM_2023_35_10_a3,
     author = {R. A. Zagitov and S. D. Salnikov and N. V. Shuvaev},
     title = {Automatic block-structured grid generation in turbo machine blade passages by {TurboR\&D.Mesher} software},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--68},
     publisher = {mathdoc},
     volume = {35},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/}
}
TY  - JOUR
AU  - R. A. Zagitov
AU  - S. D. Salnikov
AU  - N. V. Shuvaev
TI  - Automatic block-structured grid generation in turbo machine blade passages by TurboR\&D.Mesher software
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 53
EP  - 68
VL  - 35
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/
LA  - ru
ID  - MM_2023_35_10_a3
ER  - 
%0 Journal Article
%A R. A. Zagitov
%A S. D. Salnikov
%A N. V. Shuvaev
%T Automatic block-structured grid generation in turbo machine blade passages by TurboR\&D.Mesher software
%J Matematičeskoe modelirovanie
%D 2023
%P 53-68
%V 35
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/
%G ru
%F MM_2023_35_10_a3
R. A. Zagitov; S. D. Salnikov; N. V. Shuvaev. Automatic block-structured grid generation in turbo machine blade passages by TurboR\&D.Mesher software. Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 53-68. http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/

[1] V. N. Koterov, “Three-Dimensional Grid Generation in Multistage Axial Turbines Based on the Variational Barrier Method”, Computational Mathematics and Mathematical Physics, 45:8 (2005), 1325–1333 | MR | MR | Zbl

[2] R. A. Zagitov, A. N. Dushko, Y. N. Shmotin, “Automatic Three Dimensional Grid Generation in Turbo Machine Blade Passages”, Proc. of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, v. 2B, Turbomachinery

[3] B. N. Azarenok, “Variatsionnyi metod postroeniia geksaedralnykh setok s upravliaiushchei metrikoi”, Matem. modelirovanie, 20:9 (2008), 3–22 | Zbl

[4] B. N. Azarenok, Ob odnom variatsionnom metode postroeniia prostranstvennykh setok, VTs RAN, M., 2006, 51 pp.

[5] S. A. Ivanenko, “Control of Cell Shapes in the Course of Grid Generation”, Computational Mathematics and Mathematical Physics, 40:11 (2000), 1596–1616 | MR | Zbl

[6] S. A. Ivanenko, “Harmonic mappings”, Handbook of Grid Generation, Chapter 8, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR

[7] V. D. Liseikin, Grid Generation Methods, Springer, Berlin, 1999 | MR | Zbl

[8] O. V. Ushakova, “Nondegeneracy Conditions for Three-Dimensional Cells and a Formula for the Cell's Volum”, Comput. Math. and Math. Physics, 41:6 (2001), 832–845 | MR | Zbl

[9] M. Farrashkhalvat, J. P. Miles, Basic Structured Grid generation with an introduction to unstructured grid generation, Butterworth Heinmann, 2003, 251 pp.

[10] R. E. Smith, “Transfinite Interpolation Generation Systems”, Handbook of Grid Generation, Chapter 3, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR

[11] S. P. Spekreijse, “Elliptic grid generation”, Handbook of Grid Generation, Chapter 4, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR

[12] J. F. Thompson, “Block-Structured Grids”, Handbook of Grid Generation, Chapter 1, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR | Zbl

[13] T. D. Blacker, M. B. Stephenson, “Paving: A new approach to automated quadrilateral mesh generation”, Inter. J. for Numerical Methods in Engineering, 32:4 (1991), 811–847 | DOI | Zbl

[14] N. Kowalski, F. Ledoux, P. Frey, “A pde based approach to multidomain partitioning and quadrilateral meshing”, Proc. of the 21st International Meshing Roundtable, eds. X. Jiao, J. Weill, Springer, Berlin–Heidelberg, 2013, 137–154 | DOI

[15] H. J. Fogg, C. G. Armstrong, T. T. Robinson, “Automatic generation of multiblock decompositions of surfaces”, International Journal for Numerical Methods in Engineering, 101:13 (2015), 965–991 | DOI | MR | Zbl

[16] T. K. H. Tam, C. G. Armstrong, “2D finite element mesh generation by medial axis subdivision”, Advances in Engineering Software and Workstations, 13:5 (1991), 313–324 | DOI | Zbl

[17] D. Rigby, TopMaker: A technique for automatic multi-block topology generation using the medial axis, Tech. Rep. NASA/CR-213044, 2004

[18] H. J. Fogg, C. G. Armstrong, T. T. Robinson, “Enhanced medial-axis-based block-structured meshing in 2-D”, Computer-Aided Design, 72:5/6 (2015), 87–101

[19] L. Sun, C. G. Armstrong. T.T. Robinson, D. Papadimitrakis, “Quadrilateral multi-block decomposition via auxiliary subdivision”, Journal of Computational Design and Engineering, 8:3 (2021), 871–893 | DOI

[20] L. Paul Chew, “Constrained Delaunay Triangulations”, Algorithmic, 4:1 (1989), 97–108 | DOI | MR | Zbl

[21] G. Bunin, “A continuum theory for unstructured mesh generation in two dimensions”, Computer Aided Geometric Design, 25:1 (2008), 14–40 | DOI | MR | Zbl

[22] H. J. Fogg, L. Sun, J. E. Makem, C. G. Armstrong, T. T. Robinson, “Singularities in structured meshes and cross-fields”, Computer-Aided Design, 105 (2018), 11–25 | DOI | MR

[23] N. N. Golovanov, Geometricheskoe modelirovanie, DMK Press, M., 2020, 406 pp.

[24] A. Gorobets, P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers”, Computer Physics Communications, 271 (2022), 108231 | DOI | MR