Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_10_a3, author = {R. A. Zagitov and S. D. Salnikov and N. V. Shuvaev}, title = {Automatic block-structured grid generation in turbo machine blade passages by {TurboR\&D.Mesher} software}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {53--68}, publisher = {mathdoc}, volume = {35}, number = {10}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/} }
TY - JOUR AU - R. A. Zagitov AU - S. D. Salnikov AU - N. V. Shuvaev TI - Automatic block-structured grid generation in turbo machine blade passages by TurboR\&D.Mesher software JO - Matematičeskoe modelirovanie PY - 2023 SP - 53 EP - 68 VL - 35 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/ LA - ru ID - MM_2023_35_10_a3 ER -
%0 Journal Article %A R. A. Zagitov %A S. D. Salnikov %A N. V. Shuvaev %T Automatic block-structured grid generation in turbo machine blade passages by TurboR\&D.Mesher software %J Matematičeskoe modelirovanie %D 2023 %P 53-68 %V 35 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/ %G ru %F MM_2023_35_10_a3
R. A. Zagitov; S. D. Salnikov; N. V. Shuvaev. Automatic block-structured grid generation in turbo machine blade passages by TurboR\&D.Mesher software. Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 53-68. http://geodesic.mathdoc.fr/item/MM_2023_35_10_a3/
[1] V. N. Koterov, “Three-Dimensional Grid Generation in Multistage Axial Turbines Based on the Variational Barrier Method”, Computational Mathematics and Mathematical Physics, 45:8 (2005), 1325–1333 | MR | MR | Zbl
[2] R. A. Zagitov, A. N. Dushko, Y. N. Shmotin, “Automatic Three Dimensional Grid Generation in Turbo Machine Blade Passages”, Proc. of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, v. 2B, Turbomachinery
[3] B. N. Azarenok, “Variatsionnyi metod postroeniia geksaedralnykh setok s upravliaiushchei metrikoi”, Matem. modelirovanie, 20:9 (2008), 3–22 | Zbl
[4] B. N. Azarenok, Ob odnom variatsionnom metode postroeniia prostranstvennykh setok, VTs RAN, M., 2006, 51 pp.
[5] S. A. Ivanenko, “Control of Cell Shapes in the Course of Grid Generation”, Computational Mathematics and Mathematical Physics, 40:11 (2000), 1596–1616 | MR | Zbl
[6] S. A. Ivanenko, “Harmonic mappings”, Handbook of Grid Generation, Chapter 8, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR
[7] V. D. Liseikin, Grid Generation Methods, Springer, Berlin, 1999 | MR | Zbl
[8] O. V. Ushakova, “Nondegeneracy Conditions for Three-Dimensional Cells and a Formula for the Cell's Volum”, Comput. Math. and Math. Physics, 41:6 (2001), 832–845 | MR | Zbl
[9] M. Farrashkhalvat, J. P. Miles, Basic Structured Grid generation with an introduction to unstructured grid generation, Butterworth Heinmann, 2003, 251 pp.
[10] R. E. Smith, “Transfinite Interpolation Generation Systems”, Handbook of Grid Generation, Chapter 3, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR
[11] S. P. Spekreijse, “Elliptic grid generation”, Handbook of Grid Generation, Chapter 4, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR
[12] J. F. Thompson, “Block-Structured Grids”, Handbook of Grid Generation, Chapter 1, eds. Thompson J.F., Soni B.K., Weatherill N.P., CRC Press, Boca Raton, Fl, 1999 | MR | Zbl
[13] T. D. Blacker, M. B. Stephenson, “Paving: A new approach to automated quadrilateral mesh generation”, Inter. J. for Numerical Methods in Engineering, 32:4 (1991), 811–847 | DOI | Zbl
[14] N. Kowalski, F. Ledoux, P. Frey, “A pde based approach to multidomain partitioning and quadrilateral meshing”, Proc. of the 21st International Meshing Roundtable, eds. X. Jiao, J. Weill, Springer, Berlin–Heidelberg, 2013, 137–154 | DOI
[15] H. J. Fogg, C. G. Armstrong, T. T. Robinson, “Automatic generation of multiblock decompositions of surfaces”, International Journal for Numerical Methods in Engineering, 101:13 (2015), 965–991 | DOI | MR | Zbl
[16] T. K. H. Tam, C. G. Armstrong, “2D finite element mesh generation by medial axis subdivision”, Advances in Engineering Software and Workstations, 13:5 (1991), 313–324 | DOI | Zbl
[17] D. Rigby, TopMaker: A technique for automatic multi-block topology generation using the medial axis, Tech. Rep. NASA/CR-213044, 2004
[18] H. J. Fogg, C. G. Armstrong, T. T. Robinson, “Enhanced medial-axis-based block-structured meshing in 2-D”, Computer-Aided Design, 72:5/6 (2015), 87–101
[19] L. Sun, C. G. Armstrong. T.T. Robinson, D. Papadimitrakis, “Quadrilateral multi-block decomposition via auxiliary subdivision”, Journal of Computational Design and Engineering, 8:3 (2021), 871–893 | DOI
[20] L. Paul Chew, “Constrained Delaunay Triangulations”, Algorithmic, 4:1 (1989), 97–108 | DOI | MR | Zbl
[21] G. Bunin, “A continuum theory for unstructured mesh generation in two dimensions”, Computer Aided Geometric Design, 25:1 (2008), 14–40 | DOI | MR | Zbl
[22] H. J. Fogg, L. Sun, J. E. Makem, C. G. Armstrong, T. T. Robinson, “Singularities in structured meshes and cross-fields”, Computer-Aided Design, 105 (2018), 11–25 | DOI | MR
[23] N. N. Golovanov, Geometricheskoe modelirovanie, DMK Press, M., 2020, 406 pp.
[24] A. Gorobets, P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers”, Computer Physics Communications, 271 (2022), 108231 | DOI | MR