Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2023_35_10_a2, author = {A. I. Troshin and S. V. Bakhne}, title = {Application of hybrid {RANS/LES} methods for the simulation of shock-induced turbulent boundary layer separation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {36--52}, publisher = {mathdoc}, volume = {35}, number = {10}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/} }
TY - JOUR AU - A. I. Troshin AU - S. V. Bakhne TI - Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation JO - Matematičeskoe modelirovanie PY - 2023 SP - 36 EP - 52 VL - 35 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/ LA - ru ID - MM_2023_35_10_a2 ER -
%0 Journal Article %A A. I. Troshin %A S. V. Bakhne %T Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation %J Matematičeskoe modelirovanie %D 2023 %P 36-52 %V 35 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/ %G ru %F MM_2023_35_10_a2
A. I. Troshin; S. V. Bakhne. Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 36-52. http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/
[1] C. Meneveau, J. Katz, “Scale-invariance and turbulence models for large-eddy simulation”, Annu. Rev. Fluid. Mech, 32 (2000), 1–32 | DOI | MR | Zbl
[2] P. R. Spalart, “Strategies for turbulence modelling and simulations”, Int. J. Heat Fluid Flow, 21 (2000), 252–263 | DOI
[3] B. Chaouat, “The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows”, Flow Turbulence Combust, 99 (2017), 279–327 | DOI
[4] U. Piomelli, E. Balaras, “Wall-layer models for large-eddy simulations”, Annu. Rev. Fluid. Mech, 34 (2002), 349–374 | DOI | MR | Zbl
[5] J. M. Delery, “Shock wave/turbulent boundary layer interaction and its control”, Prog. Aerospace Sci, 22:4 (1985), 209–280 | DOI
[6] D. Knight, H. Yan, A. G. Panaras, A. Zheltovodov, “Advances in CFD prediction of shock wave turbulent boundary layer interactions”, Prog. Aerosp. Sci, 39 (2003), 121–184 | DOI
[7] P. R. Spalart, K. V. Belyaev, A. V. Garbaruk, M. L. Shur, M. Kh. Strelets, A. K. Travin, “Large-eddy and direct numerical simulations of the Bachalo-Johnson flow with shock-induced separation”, Flow Turbulence Combust, 99 (2017), 865–885 | DOI
[8] M. S. Gritskevich, A. V. Garbaruk, J. Schutze, F. R. Menter, “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turbulence Combust, 88 (2012), 431–449 | DOI | Zbl
[9] R. Balin, K. E. Jansen, P. R. Spalart, Wall-modeled LES of flow over a Gaussian bump with strong pressure gradients and separation, AIAA Paper 2020–3012, 19 pp.
[10] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat Fluid Flow, 29 (2008), 1638–1649 | DOI
[11] S. Bakhne, A. I. Troshin, “Sravnenie protivopotochnykh i simmetrichnykh WENO-skhem pri modelirovanii bazovykh turbulentnykh techenii metodom krupnykh vikhrei”, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 63:6 (2023), 1024–1039 | MR
[12] N. J. Mullenix, D. V. Gaitonde, A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows, AIAA paper 2011-366, 18 pp. | Zbl
[13] S. Zhao, N. Lardjane, I. Fedioun, “Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows”, Comp. Fluids, 95 (2014), 74–87 | DOI | MR | Zbl
[14] A. Suresh, H. Huynh, “Accurate monotonicity-preserving schemes with Runge-Kutta time stepping”, J. Comp. Phys, 136:1 (1997), 83–99 | DOI | MR | Zbl
[15] V. Pasquariello, S. Hickel, N. A. Adams, “Unsteady effects of strong shock-wave/boundary-layer interaction at High Reynolds number”, J. Fluid Mech, 823 (2017), 617–657 | DOI | MR | Zbl
[16] D. Daub, S. Willems, A. Gulhan, “Experimental results on unsteady shock-wave/boundary layer interaction induced by an impinging shock”, CEAS Space J., 8:1 (2015), 3–12 | DOI
[17] F. R. Menter, “Review of the shear-stress transport turbulence model experience from an industrial perspective”, Int. J. Comput. Fluid Dyn., 23:4 (2009), 305–316 | DOI | Zbl
[18] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust, 93 (2014), 63–92 | DOI
[19] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turbulence Combust, 95 (2015), 709–737 | DOI
[20] A. I. Troshin, S. S. Molev, V. V. Vlasenko, S. V. Mikhailov, S. Bakhne, S. V. Matyash, “Modelirivanie turbulentnykh techenii na osnove podkhoda IDDES s pomoshchiu programmy zFlare”, Vych. Mekhanika sploshnykh sred, 16:2 (2023), 203–218
[21] R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[22] Z. Wang, J. Zhu, N. Zhao, “A low dissipation finite difference nested multi-resolution WENO scheme for Euler/Navier-Stokes equations”, J. Comp. Phys., 429 (2023), 110006 | DOI | MR
[23] E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, J. Physics: Conference Series, 929 (2017), 012099 | DOI
[24] S. Bakhne, V. Sabelnikov, “A method for choosing the spatial and temporal approximations for the LES approach”, Fluids, 7:12 (2022), 376 | DOI
[25] A. O. Budnikova, “Podkhod k uchetu vzaimodeistviia RANS- i LES-oblastei pogranichnogo sloiia v raschetakh metodom SST-IDDes”, Trudy MFTI, 14:4 (56) (2022), 11–19
[26] U. Piomelli, E. Balaras, H. Pasinato, K. D. Squires, P. R. Spalart, “The inner-outer layer interface in large-eddy simulations with wall-layer models”, Int. J. Heat Fluid Flow, 24:4 (2003), 538–550 | DOI | MR
[27] A. Troshin, S. Bakhne, V. Sabelnikov, “Numerical and physical aspects of large-eddy simulation of turbulent mixing in a helium-air supersonic co-flowing jet”, Prog. Turbulence IX, Proc. iTi Conference on Turbulence, 2021, 297–302 | DOI | MR
[28] J. G. Ballouz, N. T. Ouellette, “Tensor geometry in the turbulent cascade”, J. Fluid Mech., 835 (2018), 1048–1064 | DOI | MR | Zbl