Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation
Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 36-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of shock-induced turbulent boundary layer separation simulations using scale-resolving methods with wall modelling (WMLES) are presented. A test case is chosen for which experimental data are available as well as reference large eddy simulation results. The IDDES method based on the SST turbulence model in the WMLES mode is compared with a similar method in which the explicit subgrid scale model is turned off. Within the framework of the second approach, two schemes of the WENO family are considered. In each case, two grids of different density are employed. Separation size, pressure and friction coefficient distributions along the wall, and one-point pressure probability density functions in two reference points are compared. An unexpected result is demonstrated: in all the scale-resolving simulations, the separation region length turned out to be underestimated by 15–28%, and no significant reduction in the error with mesh refinement was observed. Possible reasons for this phenomenon are discussed.
Mots-clés : LES, ILES
Keywords: IDDES, WENO, hybrid methods, shock wave, turbulent boundary layer, separation.
@article{MM_2023_35_10_a2,
     author = {A. I. Troshin and S. V. Bakhne},
     title = {Application of hybrid {RANS/LES} methods for the simulation of shock-induced turbulent boundary layer separation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {36--52},
     publisher = {mathdoc},
     volume = {35},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/}
}
TY  - JOUR
AU  - A. I. Troshin
AU  - S. V. Bakhne
TI  - Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 36
EP  - 52
VL  - 35
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/
LA  - ru
ID  - MM_2023_35_10_a2
ER  - 
%0 Journal Article
%A A. I. Troshin
%A S. V. Bakhne
%T Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation
%J Matematičeskoe modelirovanie
%D 2023
%P 36-52
%V 35
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/
%G ru
%F MM_2023_35_10_a2
A. I. Troshin; S. V. Bakhne. Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation. Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 36-52. http://geodesic.mathdoc.fr/item/MM_2023_35_10_a2/

[1] C. Meneveau, J. Katz, “Scale-invariance and turbulence models for large-eddy simulation”, Annu. Rev. Fluid. Mech, 32 (2000), 1–32 | DOI | MR | Zbl

[2] P. R. Spalart, “Strategies for turbulence modelling and simulations”, Int. J. Heat Fluid Flow, 21 (2000), 252–263 | DOI

[3] B. Chaouat, “The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows”, Flow Turbulence Combust, 99 (2017), 279–327 | DOI

[4] U. Piomelli, E. Balaras, “Wall-layer models for large-eddy simulations”, Annu. Rev. Fluid. Mech, 34 (2002), 349–374 | DOI | MR | Zbl

[5] J. M. Delery, “Shock wave/turbulent boundary layer interaction and its control”, Prog. Aerospace Sci, 22:4 (1985), 209–280 | DOI

[6] D. Knight, H. Yan, A. G. Panaras, A. Zheltovodov, “Advances in CFD prediction of shock wave turbulent boundary layer interactions”, Prog. Aerosp. Sci, 39 (2003), 121–184 | DOI

[7] P. R. Spalart, K. V. Belyaev, A. V. Garbaruk, M. L. Shur, M. Kh. Strelets, A. K. Travin, “Large-eddy and direct numerical simulations of the Bachalo-Johnson flow with shock-induced separation”, Flow Turbulence Combust, 99 (2017), 865–885 | DOI

[8] M. S. Gritskevich, A. V. Garbaruk, J. Schutze, F. R. Menter, “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turbulence Combust, 88 (2012), 431–449 | DOI | Zbl

[9] R. Balin, K. E. Jansen, P. R. Spalart, Wall-modeled LES of flow over a Gaussian bump with strong pressure gradients and separation, AIAA Paper 2020–3012, 19 pp.

[10] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat Fluid Flow, 29 (2008), 1638–1649 | DOI

[11] S. Bakhne, A. I. Troshin, “Sravnenie protivopotochnykh i simmetrichnykh WENO-skhem pri modelirovanii bazovykh turbulentnykh techenii metodom krupnykh vikhrei”, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 63:6 (2023), 1024–1039 | MR

[12] N. J. Mullenix, D. V. Gaitonde, A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows, AIAA paper 2011-366, 18 pp. | Zbl

[13] S. Zhao, N. Lardjane, I. Fedioun, “Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows”, Comp. Fluids, 95 (2014), 74–87 | DOI | MR | Zbl

[14] A. Suresh, H. Huynh, “Accurate monotonicity-preserving schemes with Runge-Kutta time stepping”, J. Comp. Phys, 136:1 (1997), 83–99 | DOI | MR | Zbl

[15] V. Pasquariello, S. Hickel, N. A. Adams, “Unsteady effects of strong shock-wave/boundary-layer interaction at High Reynolds number”, J. Fluid Mech, 823 (2017), 617–657 | DOI | MR | Zbl

[16] D. Daub, S. Willems, A. Gulhan, “Experimental results on unsteady shock-wave/boundary layer interaction induced by an impinging shock”, CEAS Space J., 8:1 (2015), 3–12 | DOI

[17] F. R. Menter, “Review of the shear-stress transport turbulence model experience from an industrial perspective”, Int. J. Comput. Fluid Dyn., 23:4 (2009), 305–316 | DOI | Zbl

[18] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust, 93 (2014), 63–92 | DOI

[19] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turbulence Combust, 95 (2015), 709–737 | DOI

[20] A. I. Troshin, S. S. Molev, V. V. Vlasenko, S. V. Mikhailov, S. Bakhne, S. V. Matyash, “Modelirivanie turbulentnykh techenii na osnove podkhoda IDDES s pomoshchiu programmy zFlare”, Vych. Mekhanika sploshnykh sred, 16:2 (2023), 203–218

[21] R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl

[22] Z. Wang, J. Zhu, N. Zhao, “A low dissipation finite difference nested multi-resolution WENO scheme for Euler/Navier-Stokes equations”, J. Comp. Phys., 429 (2023), 110006 | DOI | MR

[23] E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, J. Physics: Conference Series, 929 (2017), 012099 | DOI

[24] S. Bakhne, V. Sabelnikov, “A method for choosing the spatial and temporal approximations for the LES approach”, Fluids, 7:12 (2022), 376 | DOI

[25] A. O. Budnikova, “Podkhod k uchetu vzaimodeistviia RANS- i LES-oblastei pogranichnogo sloiia v raschetakh metodom SST-IDDes”, Trudy MFTI, 14:4 (56) (2022), 11–19

[26] U. Piomelli, E. Balaras, H. Pasinato, K. D. Squires, P. R. Spalart, “The inner-outer layer interface in large-eddy simulations with wall-layer models”, Int. J. Heat Fluid Flow, 24:4 (2003), 538–550 | DOI | MR

[27] A. Troshin, S. Bakhne, V. Sabelnikov, “Numerical and physical aspects of large-eddy simulation of turbulent mixing in a helium-air supersonic co-flowing jet”, Prog. Turbulence IX, Proc. iTi Conference on Turbulence, 2021, 297–302 | DOI | MR

[28] J. G. Ballouz, N. T. Ouellette, “Tensor geometry in the turbulent cascade”, J. Fluid Mech., 835 (2018), 1048–1064 | DOI | MR | Zbl