Numerical simulation of evolution of a curved turbulent wake subjected to adverse pressure gradient
Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results are presented of the numerical experiments aimed at obtaining detailed and high-fidelity data on mean and turbulent characteristics of the asymmetric curved turbulent wake behind a flat plate subjected to adverse pressure gradient. The computations are performed for the model wake configuration designed earlier by the authors with the use of the scale-resolving zonal RANS-IDDES approach to turbulence representation. The reliability of the obtained results is confirmed by the grid independence of the obtained solutions, and a comparison of these results with the corresponding results of computations performed with the use of various semi-empirical RANS models indicates insufficient accuracy of the latter and necessity of their further improvement.
Keywords: asymmetric curved turbulent wake, numerical experiment, zonal RANS-LES approach.
Mots-clés : adverse pressure gradient
@article{MM_2023_35_10_a0,
     author = {A. S. Stabnikov and M. Kh. Strelets and A. K. Travin and M. L. Shur},
     title = {Numerical simulation of evolution of a curved turbulent wake subjected to adverse pressure gradient},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {35},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2023_35_10_a0/}
}
TY  - JOUR
AU  - A. S. Stabnikov
AU  - M. Kh. Strelets
AU  - A. K. Travin
AU  - M. L. Shur
TI  - Numerical simulation of evolution of a curved turbulent wake subjected to adverse pressure gradient
JO  - Matematičeskoe modelirovanie
PY  - 2023
SP  - 3
EP  - 18
VL  - 35
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2023_35_10_a0/
LA  - ru
ID  - MM_2023_35_10_a0
ER  - 
%0 Journal Article
%A A. S. Stabnikov
%A M. Kh. Strelets
%A A. K. Travin
%A M. L. Shur
%T Numerical simulation of evolution of a curved turbulent wake subjected to adverse pressure gradient
%J Matematičeskoe modelirovanie
%D 2023
%P 3-18
%V 35
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2023_35_10_a0/
%G ru
%F MM_2023_35_10_a0
A. S. Stabnikov; M. Kh. Strelets; A. K. Travin; M. L. Shur. Numerical simulation of evolution of a curved turbulent wake subjected to adverse pressure gradient. Matematičeskoe modelirovanie, Tome 35 (2023) no. 10, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2023_35_10_a0/

[1] C. L. Rumsey, J. P. Slotnick, A. J. Sclafani, Overview and Summary of the Third AIAA High Lift Prediction Workshop, AIAA Paper AIAA-2018-1258, 2018 | Zbl

[2] D. M. Driver, G. G. Mateer, “Wake flow in adverse pressure gradient”, Inter. J. of Heat and Fluid Flow, 23:5 (2002), 564–571 | DOI

[3] M. J. Tummers, K. Hanjalic, D. M. Passchier, R. A. W. M. Henkes, “Computations of a turbu-lent wake in a strong adverse pressure gradient”, Inter. J. of Heat and Fluid Flow, 28:3 (2007), 418–428 | DOI

[4] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Inter. J. of Heat and Fluid Flow, 29 (2008), 1638–1649 | DOI

[5] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems”, Flow, Turbulence and Combustion, 93 (2014), 63–92 | DOI

[6] M. Shur, M. Strelets, A. Travin, “STG based on spatially distributed volume source terms (VSTG)”, Notes on Numer. Fluid Mech. Multidisciplinary Design, 134 (2018), 65–69

[7] E. Guseva, M. Shur, M. Strelets, A. Travin, W. Breitenstein, R. Radespiel, P. Scholz, M. Burnazzi, T. Knopp, “Experimental/numerical study of turbulent wake in adverse pressure gradient”, Notes on Numer. Fluid Mechanics and Multidisciplinary Design, 143 (2020), 401–412 | DOI

[8] E. K. Guseva, M. Kh. Strelets, A. K. Travin, M. L. Shur, “LES-based Computation of Evolution of Turbulent Wakes Subjected to Adverse Pressure Gradient”, Mathematical Models and Computer Simulations, 13:1 (2021), 91–105 | DOI | DOI | MR

[9] E. K. Guseva, M. Kh. Strelets, A. K. Travin, M. L. Shur, “Chislennoe modelirovanie krivolineinogo turbulentnogo sleda pri nalichii neblagopriiatnogo gradient davleniia”, Vychislitelnyi eksperiment v aeroakustike i aerodinamike, Sbornik tezisov deviatoi rossiiskoi konferentsii, IPM im. M.V. Keldysha RAN, M., 2022, 109–113, 323 pp.

[10] E. K. Guseva, D. A. Niculin, A. K. Travin, R. Radespiel, P. Scholz, “RANS-based design of experimental flow model for investigation of complex curved turbulent wakes subjected to adverse pressure gradient”, Journal of Physics: Conference Series, 2103 (2021), 012203 | DOI

[11] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[12] P. R. Spalart, M. L. Shur, “On the sensitization of simple turbulence models to rotation and curvature”, Aerospace Sci. and Technol., 1 (1997), 297–302 | DOI | Zbl

[13] M. Shur, M. Strelets, A. Travin, “High-order implicit multi-block Navier-Stokes code: Ten-year experience of application to RANS/DES/LES/DNS of turbulence”, 7th Symp. on overset composite grids and solution technology (Huntington Beach, CA, 2004) https://cfd.spbstu.ru//agarbaruk/doc/NTS_code.pdf

[14] S. E. Rogers, D. Kwak, “An upwind differencing scheme for the time accurate incompressible Navier-Stokes equations”, AIAA Journal, 28:2 (1990), 253–262 | DOI | MR | Zbl

[15] A. Dejoan, M. A. Leschziner, “Large eddy simulation of a plane turbulent wall jet”, Phys. Fluids, 17 (2005), 025102 | DOI | Zbl

[16] R. Cecora, R. Radespiel, B. Eisfeld, A. Probst, “Differential Reynolds-stress modeling for aeronautics”, AIAA Journal, 53:3 (2014), 937–755