Mathematical modeling of the transition resistance of the insulation of the main pipeline according to the data of measurements of the magnetic induction vector modulus
Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 107-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpretation of magnetometry data of main pipelines in order to assess the state of their insulating coating is a relevant subtask for automated control systems for the process of pipeline operation. Determining the transient resistance at the "soil / pipe" boundary is an inverse problem of mathematical physics. In the article, a mathematical model of the inverse problem of determining the transient resistance at the "soil / pipe" boundary is constructed according to measurements in air of the modulus of the magnetic induction vector of the magnetic field excited by a direct electric current of the cathodic electrochemical protection of the pipeline. In the class of bounded piecewise constant functions, the solution is sought by A.N. Tikhonov's method as an extremal of the regularizing functional. The results of the computational experiment demonstrate the possibility of determining the transition resistance of the outer insulating coating of the pipeline according to the measurements of the magnetic induction vector in air at heights varying from 2 to 4 lengths of "defective" segments.
Keywords: homogeneous half-space, cathodic electrochemical protection of the main pipeline, contact resistance of the insulating coating, mathematical modeling of electromagnetic fields, inverse problem.
@article{MM_2022_34_9_a6,
     author = {V. N. Krizsky and S. V. Viktorov and Ya. A. Luntovskaya},
     title = {Mathematical modeling of the transition resistance of the insulation of the main pipeline according to the data of measurements of the magnetic induction vector modulus},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {34},
     number = {9},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_9_a6/}
}
TY  - JOUR
AU  - V. N. Krizsky
AU  - S. V. Viktorov
AU  - Ya. A. Luntovskaya
TI  - Mathematical modeling of the transition resistance of the insulation of the main pipeline according to the data of measurements of the magnetic induction vector modulus
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 107
EP  - 122
VL  - 34
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_9_a6/
LA  - ru
ID  - MM_2022_34_9_a6
ER  - 
%0 Journal Article
%A V. N. Krizsky
%A S. V. Viktorov
%A Ya. A. Luntovskaya
%T Mathematical modeling of the transition resistance of the insulation of the main pipeline according to the data of measurements of the magnetic induction vector modulus
%J Matematičeskoe modelirovanie
%D 2022
%P 107-122
%V 34
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_9_a6/
%G ru
%F MM_2022_34_9_a6
V. N. Krizsky; S. V. Viktorov; Ya. A. Luntovskaya. Mathematical modeling of the transition resistance of the insulation of the main pipeline according to the data of measurements of the magnetic induction vector modulus. Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 107-122. http://geodesic.mathdoc.fr/item/MM_2022_34_9_a6/

[1] L. A. Goldobina, P. S. Orlov, “Analiz prichin korrozionnykh razrushenii podzemnykh truboprovodov i novye resheniia povysheniia stoikosti stali k korrozii”, Zapiski Gornogo instituta, 219 (2016), 459–464 | DOI

[2] ISO 15589-1: 2003 (E) Petroleum and Natural gas Industries – Cathodic Protection for Pipeline Transportation Systems – Part 1: On-land Pipelines.

[3] V. M. Sakson, A. B. Sergeev, A. B. Prokazin, “Diagnostika stalnykh truboprovodov metodom beskontaktnoi magnitometrii”, Mir izmerenii, 2012, no. 6, 17–21

[4] A. N. Liubchik, “Sposob distantsionnogo magnitometricheskogo kontrolia tekhnicheskogo sostoianiia magistralnykh truboprovodov”, Zapiski Gornogo Instituta, 195 (2012), 268–271

[5] D. Hausamann, W. Zirnig, G. Schreier, “Monitoring Of Gas Transmission Pipelines A Customer Driven Civil UAV Application”, Proceedings of the ONERA-DLR Symposium ODAS 2003, S3-6-1–S3-6-15 https://elib.dlr.de/19883/

[6] A. M. Bolotnov, N. N. Glazov, N. P. Glazov et al., “Mathematical model and algorithm for computing the electric field of pipeline cathodic protection with extended anodes”, Prot. Met., 44 (2008), 408–411 | DOI

[7] V. N. Tkachenko, “Raschet elektrokhimicheskoi zashchity truboprovodnykh setei ot korrozii metodom diskretizatsii”, Elektrichestvo, 2007, no. 12, 41–47

[8] V. N. Krizsky, P. N. Aleksandrov, A. A. Kovalsky, S. V. Viktorov, “Modelirovanie elektromagnitnykh polei sistem katodnoi zashchity magistralnykh truboprovodov v gorizontalno-sloistykh sredakh”, Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 9:5 (2019), 558–567 | DOI

[9] V. N. Krizsky, P. N. Aleksandrov, A. A. Kovalsky, S. V. Viktorov, “Matematicheskoe modelirovanie elektricheskikh polei katodnoi zashchity magistralnykh truboprovodov v anizotropnykh sredakh”, Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 10:1 (2020), 52–63 | DOI

[10] L. D. Landau, E. M. Lifshits, The Classical Theory of Fields, Pergamon press, 387 pp. | MR | MR

[11] A. N. Tikhonov, V. Ia. Arsenin, Metody resheniia nekorrektnykh zadach, Nauka. Glavnaia redaktsiia fiziko-matematicheskoi literatury, M., 1986, 288 pp.

[12] A. G. Iagola, Ianfei Van, I. E. Stepanova, V. N. Titarenko, Obratnye zadachi i metody ikh resheniia. Prilozheniia k geofizike, Binom. Laboratoriia znanii, M., 2014, 216 pp.

[13] V. N. Krizsky, S. V. Viktorov, M. B. Beliaeva, Matematicheskoe modelirovanie geoelektricheskikh polei v kusochno-odnorodnykh kvazitrekhmernykh sredakh, Sterlitamakskii filial BashGU, Sterlitamak, 2015, 103 pp.

[14] C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999, 180 pp. | MR