Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results
Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 71-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study presents a numerical investigation of optimization algorithms for the adaptation of hydrodynamic models based on the well test results. The considered optimization algorithms are based on the Levenberg-Marquardt method and have differences in the updating method of the Hessian's main diagonal and the calculation of the Jacobian. Two algorithms are presented in the pseudocode form, which allow to configure variations of the Levenberg-Marquardt method. Functions that transform the unconditional Levenberg-Marquardt optimization into a conditional one are proposed. A comparative analysis of the speed and quality of well bottom rates calculation for ten wells with different types by the number of analytical model function calls, calculation time, average relative error showed positive results when using the proposed numerical optimization algorithms.
Keywords: adaptation of the hydrodynamic model, search with bounds, Hessian update, Numerical investigation, pressure transient analysis.
Mots-clés : Levenberg-Marquadt algorithm, Broyden's method
@article{MM_2022_34_9_a4,
     author = {D. N. Maykov and S. S. Makarov},
     title = {Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {34},
     number = {9},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/}
}
TY  - JOUR
AU  - D. N. Maykov
AU  - S. S. Makarov
TI  - Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 71
EP  - 82
VL  - 34
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/
LA  - ru
ID  - MM_2022_34_9_a4
ER  - 
%0 Journal Article
%A D. N. Maykov
%A S. S. Makarov
%T Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results
%J Matematičeskoe modelirovanie
%D 2022
%P 71-82
%V 34
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/
%G ru
%F MM_2022_34_9_a4
D. N. Maykov; S. S. Makarov. Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results. Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 71-82. http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/

[1] M. J. Kochenderfer, T. A. Wheeler, Algorithms for Optimization, The MIT Press, 2019, 520 pp. | MR

[2] R. K. Arora, Optimization: Algorithms and Applications, Chapman and Hall/CRC, 2015, 466 pp.

[3] Matematicheskoe modelirovanie plastovykh system, OAO «Surgutneftegaz», 117–121 https://www.geokniga.org/bookfiles/geokniga-matematicheskoe-modelirovanie-plastovyh-sistem_0.pdf

[4] S. Roweis, Levenberg-Marquardt optimization, University of Toronto, 1996

[5] E. Eade, Gauss-Newton/Levenberg-Marquardt Optimization, 2013 https://cs.nyu.edu/r̃oweis/

[6] K. P. Lovetskii, L. A. Sevastianov, M. V. Paukshto, O. N. Bikeev, Matematicheskii sintez opticheslikh nanostruktur, RUDN, M., 2008, 18–30

[7] A. F. Izmailov, A. S. Kurennoy, P. I. Stetsyuk, “Levenberg-Marquardt method for unconstrained optimization”, Vestnik Tambovskogo universiteta, 24:125 (2019), 60–74

[8] S. S. Parkhomenko, T. M. Ledeneva, “Training neural networks of the method Levenberg-Marquardt in larger the amount of data”, Vestnik VGU, 2014, no. 2, 98–106

[9] A. Ranganathan, The Levenberg-Marquardt Algorithm https://www.researchgate.net/publication/2877846_The_Levenberg-Marquardt_Algorithm

[10] V. V. Zaitsev, V. M. Treshchev, Chislennye metody dlia fizikov, nelineinye uravneniia i optimizatsiia, Samarskii universitet, 2005, 37–45

[11] M. Berry, Comparison between Newton-Raphson and Broyden?s methods for trajectory design problems, 2011 https://www.researchgate.net/publication/265430632_Comparis-ons_between_Newton-Raphson_and_Broydens_methods_for_trajectory_design_problems'>https://www.researchgate.net/publication/265430632_Comparisons_between_Newton-Raphson_and_Broyden's_methods_for_trajectory_design_problems

[12] F. James, M. Winkler, Minuit User's Guide, CERN, Geneva, 2004

[13] F. James, M. Roos, “Minuit-A system for function minimization and analysis of the parameter errors and correlations”, Computer Physics Communication, 1975, 343–367 | DOI

[14] M. Zic, “Solving CNLS problems by using Levenberg-Marquardt algorithm: A new approach to avoid off-limits values during a fit”, Electroanalytical Chemistry, 2017, 242–248 | DOI

[15] M. Zic, F. Iztok, V. Subotic, S. Pereverzyev, M. Kunaver, “Investigation of Electrochemical Processes in Solid Oxide Fuel Cells by Modified Levenberg-Marquardt Algorithm: A New Automatic Update Limit Strategy”, Processes, 2021, no. 9

[16] M. Lourakis, A. Argyros, “A Software Package for Generic Sparse Bundle Adjustment”, ACM Transactions on Mathematical Software, 36:1 (2009), 1–30 | DOI | MR | Zbl

[17] E. Alba, J. Chicano, “Training Neural Networks with GA Hybrid Algorithms”, Lecture Notes in Computer Sci., 2004 https://www.researchgate.net/publication/220743543_Training_Neural_Networks_with_GA_Hybrid_Algorithms

[18] Z. Chen, H. Ni, Z. Sun, S. Zhang, Q. Wang, “Study of Homogeneous Reservoir Pressure Inversion Model Based on Permeability Mechanics and Interpretation Software Design”, Mathematical Problems in Engineering, 2021

[19] C. Li, Z. Dong, X. Li, “Production analysis for fractured vertical well in rectangular coal reservoirs”, Oil Gas Science and Technology, 2018

[20] G. Stewart, Well Test Design and Analysis, PennWell Corp, 2011, 82

[21] H. Cinco-Ley, H. Z. Meng, Pressure Transient Analysis of Wells with Finite Conductivity Vertical Fractures in Double Porosity Reservoirs, SPE-18172-MS, 1988, 645–660

[22] A. Zerzar, Y. Bettam, Interpretation of Multiple Hydraulically Fractured Horizontal Wells in Closed Systems, SPE-84888-MS, 2003

[23] D. N. Maykov, S. V. Isupov, S. S. Makarov, A. S. Anikanov, “The efficient method for pressure calculation at variable rate”, Oil Industry, 2021, no. 9