Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_9_a4, author = {D. N. Maykov and S. S. Makarov}, title = {Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {71--82}, publisher = {mathdoc}, volume = {34}, number = {9}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/} }
TY - JOUR AU - D. N. Maykov AU - S. S. Makarov TI - Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results JO - Matematičeskoe modelirovanie PY - 2022 SP - 71 EP - 82 VL - 34 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/ LA - ru ID - MM_2022_34_9_a4 ER -
%0 Journal Article %A D. N. Maykov %A S. S. Makarov %T Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results %J Matematičeskoe modelirovanie %D 2022 %P 71-82 %V 34 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/ %G ru %F MM_2022_34_9_a4
D. N. Maykov; S. S. Makarov. Numerical investigation of optimization algorithms for the hydrodynamic model adaptation based on the well test results. Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 71-82. http://geodesic.mathdoc.fr/item/MM_2022_34_9_a4/
[1] M. J. Kochenderfer, T. A. Wheeler, Algorithms for Optimization, The MIT Press, 2019, 520 pp. | MR
[2] R. K. Arora, Optimization: Algorithms and Applications, Chapman and Hall/CRC, 2015, 466 pp.
[3] Matematicheskoe modelirovanie plastovykh system, OAO «Surgutneftegaz», 117–121 https://www.geokniga.org/bookfiles/geokniga-matematicheskoe-modelirovanie-plastovyh-sistem_0.pdf
[4] S. Roweis, Levenberg-Marquardt optimization, University of Toronto, 1996
[5] E. Eade, Gauss-Newton/Levenberg-Marquardt Optimization, 2013 https://cs.nyu.edu/r̃oweis/
[6] K. P. Lovetskii, L. A. Sevastianov, M. V. Paukshto, O. N. Bikeev, Matematicheskii sintez opticheslikh nanostruktur, RUDN, M., 2008, 18–30
[7] A. F. Izmailov, A. S. Kurennoy, P. I. Stetsyuk, “Levenberg-Marquardt method for unconstrained optimization”, Vestnik Tambovskogo universiteta, 24:125 (2019), 60–74
[8] S. S. Parkhomenko, T. M. Ledeneva, “Training neural networks of the method Levenberg-Marquardt in larger the amount of data”, Vestnik VGU, 2014, no. 2, 98–106
[9] A. Ranganathan, The Levenberg-Marquardt Algorithm https://www.researchgate.net/publication/2877846_The_Levenberg-Marquardt_Algorithm
[10] V. V. Zaitsev, V. M. Treshchev, Chislennye metody dlia fizikov, nelineinye uravneniia i optimizatsiia, Samarskii universitet, 2005, 37–45
[11] M. Berry, Comparison between Newton-Raphson and Broyden?s methods for trajectory design problems, 2011 https://www.researchgate.net/publication/265430632_Comparis-ons_between_Newton-Raphson_and_Broydens_methods_for_trajectory_design_problems'>https://www.researchgate.net/publication/265430632_Comparisons_between_Newton-Raphson_and_Broyden's_methods_for_trajectory_design_problems
[12] F. James, M. Winkler, Minuit User's Guide, CERN, Geneva, 2004
[13] F. James, M. Roos, “Minuit-A system for function minimization and analysis of the parameter errors and correlations”, Computer Physics Communication, 1975, 343–367 | DOI
[14] M. Zic, “Solving CNLS problems by using Levenberg-Marquardt algorithm: A new approach to avoid off-limits values during a fit”, Electroanalytical Chemistry, 2017, 242–248 | DOI
[15] M. Zic, F. Iztok, V. Subotic, S. Pereverzyev, M. Kunaver, “Investigation of Electrochemical Processes in Solid Oxide Fuel Cells by Modified Levenberg-Marquardt Algorithm: A New Automatic Update Limit Strategy”, Processes, 2021, no. 9
[16] M. Lourakis, A. Argyros, “A Software Package for Generic Sparse Bundle Adjustment”, ACM Transactions on Mathematical Software, 36:1 (2009), 1–30 | DOI | MR | Zbl
[17] E. Alba, J. Chicano, “Training Neural Networks with GA Hybrid Algorithms”, Lecture Notes in Computer Sci., 2004 https://www.researchgate.net/publication/220743543_Training_Neural_Networks_with_GA_Hybrid_Algorithms
[18] Z. Chen, H. Ni, Z. Sun, S. Zhang, Q. Wang, “Study of Homogeneous Reservoir Pressure Inversion Model Based on Permeability Mechanics and Interpretation Software Design”, Mathematical Problems in Engineering, 2021
[19] C. Li, Z. Dong, X. Li, “Production analysis for fractured vertical well in rectangular coal reservoirs”, Oil Gas Science and Technology, 2018
[20] G. Stewart, Well Test Design and Analysis, PennWell Corp, 2011, 82
[21] H. Cinco-Ley, H. Z. Meng, Pressure Transient Analysis of Wells with Finite Conductivity Vertical Fractures in Double Porosity Reservoirs, SPE-18172-MS, 1988, 645–660
[22] A. Zerzar, Y. Bettam, Interpretation of Multiple Hydraulically Fractured Horizontal Wells in Closed Systems, SPE-84888-MS, 2003
[23] D. N. Maykov, S. V. Isupov, S. S. Makarov, A. S. Anikanov, “The efficient method for pressure calculation at variable rate”, Oil Industry, 2021, no. 9