Simulation of vortex interaction with a shock wave for testing numerical algorithms
Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 54-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical simulation of the problem of the interaction of a vortex flow with a shock wave are presented on the example of using quasi-gas-dynamic (QGD) numerical algorithm, which is implemented in the QGDFoam solver. The algorithm is based on regularized equations of gas dynamics. The algorithm is implemented within the framework of the OpenFOAM open software package. The results are compared with the published data obtained on the basis of the Godunov type method of high order of accuracy and variants of the Kurganov-Tadmor method included in the open software package.
Keywords: control volume method, OpenFOAM package, non-stational supersonic ideal gas flow.
Mots-clés : quasi gas dynamic algorithm
@article{MM_2022_34_9_a3,
     author = {M. A. Kirushina and T. G. Elizarova and A. S. Epikhin},
     title = {Simulation of vortex interaction with a shock wave for testing numerical algorithms},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {54--70},
     publisher = {mathdoc},
     volume = {34},
     number = {9},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/}
}
TY  - JOUR
AU  - M. A. Kirushina
AU  - T. G. Elizarova
AU  - A. S. Epikhin
TI  - Simulation of vortex interaction with a shock wave for testing numerical algorithms
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 54
EP  - 70
VL  - 34
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/
LA  - ru
ID  - MM_2022_34_9_a3
ER  - 
%0 Journal Article
%A M. A. Kirushina
%A T. G. Elizarova
%A A. S. Epikhin
%T Simulation of vortex interaction with a shock wave for testing numerical algorithms
%J Matematičeskoe modelirovanie
%D 2022
%P 54-70
%V 34
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/
%G ru
%F MM_2022_34_9_a3
M. A. Kirushina; T. G. Elizarova; A. S. Epikhin. Simulation of vortex interaction with a shock wave for testing numerical algorithms. Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 54-70. http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/

[1] A. V. Rodionov, “Simplified artificial viscosity approach for curing the shock instability”, Computers and Fluids, 219 (2021), 104873 | DOI | MR | Zbl

[2] 5th International workshop on hight-order CFD methods https://how5.cenaero.be/

[3] T. G. Elizarova, Kvazigazodinamicheskie uravneniia i metody rascheta viazskikh techenii, Nauchnyi mir, M., 2007

[4] T. G. Elizarova, “Time averaging as an approximate technique for constructing quasi-gas-dynamic and quasi-hydrodynamic equations”, CM, 51:11 (2011), 1973–1982 | MR | Zbl

[5] M. V. Kraposhin, E. V. Smirnova, T. G. Elizarova, M. A. Istomina, “Development of a new OpenFOAM solver using regularized gas dynamic equations”, Comput. Fluids, 166 (2018), 163–175 | DOI | MR | Zbl

[6] A. Kurganov, E. Tadmor, “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations”, Journal of Computational Physics, 160:1 (2000), 241–282 | DOI | MR | Zbl

[7] M. Elghorab, V. C. Madhav Rao, J. X. Wen, “Evaluating the capability of the flux-limiter schemes in capturing the turbulence structures in a fully developed channel flow”, International Journal of Aerospace and Mechanical Eng., 12:2 (2018), 175–181

[8] I. Yu. Tagirova, A. V. Rodionov, “Application of Artificial Viscosity for Suppressing the Carbuncle Phenomenon in Godunov-Type Schemes”, Math. Models Comput. Simul., 8:3 (2016), 249–262 | DOI | MR | Zbl