Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_9_a3, author = {M. A. Kirushina and T. G. Elizarova and A. S. Epikhin}, title = {Simulation of vortex interaction with a shock wave for testing numerical algorithms}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {54--70}, publisher = {mathdoc}, volume = {34}, number = {9}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/} }
TY - JOUR AU - M. A. Kirushina AU - T. G. Elizarova AU - A. S. Epikhin TI - Simulation of vortex interaction with a shock wave for testing numerical algorithms JO - Matematičeskoe modelirovanie PY - 2022 SP - 54 EP - 70 VL - 34 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/ LA - ru ID - MM_2022_34_9_a3 ER -
%0 Journal Article %A M. A. Kirushina %A T. G. Elizarova %A A. S. Epikhin %T Simulation of vortex interaction with a shock wave for testing numerical algorithms %J Matematičeskoe modelirovanie %D 2022 %P 54-70 %V 34 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/ %G ru %F MM_2022_34_9_a3
M. A. Kirushina; T. G. Elizarova; A. S. Epikhin. Simulation of vortex interaction with a shock wave for testing numerical algorithms. Matematičeskoe modelirovanie, Tome 34 (2022) no. 9, pp. 54-70. http://geodesic.mathdoc.fr/item/MM_2022_34_9_a3/
[1] A. V. Rodionov, “Simplified artificial viscosity approach for curing the shock instability”, Computers and Fluids, 219 (2021), 104873 | DOI | MR | Zbl
[2] 5th International workshop on hight-order CFD methods https://how5.cenaero.be/
[3] T. G. Elizarova, Kvazigazodinamicheskie uravneniia i metody rascheta viazskikh techenii, Nauchnyi mir, M., 2007
[4] T. G. Elizarova, “Time averaging as an approximate technique for constructing quasi-gas-dynamic and quasi-hydrodynamic equations”, CM, 51:11 (2011), 1973–1982 | MR | Zbl
[5] M. V. Kraposhin, E. V. Smirnova, T. G. Elizarova, M. A. Istomina, “Development of a new OpenFOAM solver using regularized gas dynamic equations”, Comput. Fluids, 166 (2018), 163–175 | DOI | MR | Zbl
[6] A. Kurganov, E. Tadmor, “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations”, Journal of Computational Physics, 160:1 (2000), 241–282 | DOI | MR | Zbl
[7] M. Elghorab, V. C. Madhav Rao, J. X. Wen, “Evaluating the capability of the flux-limiter schemes in capturing the turbulence structures in a fully developed channel flow”, International Journal of Aerospace and Mechanical Eng., 12:2 (2018), 175–181
[8] I. Yu. Tagirova, A. V. Rodionov, “Application of Artificial Viscosity for Suppressing the Carbuncle Phenomenon in Godunov-Type Schemes”, Math. Models Comput. Simul., 8:3 (2016), 249–262 | DOI | MR | Zbl