Multi-criteria interval optimization of conditions for complex chemical reactions on the basis of a kinetic model
Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 97-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of multicriteria interval optimization of the conditions for complex chemical reactions is formulated on the basis of an interval kinetic model. A solution method is proposed, based on evolutionary optimization algorithms, in the form of an interval Pareto front. An interval kinetic model has been developed for the reaction of dimethyl carbonate with alcohols in the presence of a Co2(CO)8 metal complex catalyst, and two- sided limits on component concentrations and kinetic parameters have been determined. For this process, the effect of temperature and its possible perturbation on the values of the optimality criteria is calculated: the yield of the target product and productivity, with appropriate restrictions on changing the width of the interval.
Keywords: multicriteria interval optimization, technological parameters, kinetic model, dimethyl carbonate.
Mots-clés : Pareto interval front
@article{MM_2022_34_8_a5,
     author = {K. F. Koledina},
     title = {Multi-criteria interval optimization of conditions for complex chemical reactions on the basis of a kinetic model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {34},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_8_a5/}
}
TY  - JOUR
AU  - K. F. Koledina
TI  - Multi-criteria interval optimization of conditions for complex chemical reactions on the basis of a kinetic model
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 97
EP  - 109
VL  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_8_a5/
LA  - ru
ID  - MM_2022_34_8_a5
ER  - 
%0 Journal Article
%A K. F. Koledina
%T Multi-criteria interval optimization of conditions for complex chemical reactions on the basis of a kinetic model
%J Matematičeskoe modelirovanie
%D 2022
%P 97-109
%V 34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_8_a5/
%G ru
%F MM_2022_34_8_a5
K. F. Koledina. Multi-criteria interval optimization of conditions for complex chemical reactions on the basis of a kinetic model. Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 97-109. http://geodesic.mathdoc.fr/item/MM_2022_34_8_a5/

[1] S. E. Bukhtoyarov, V. A. Emelichev, “Parametrization of the optimality principle (from Pareto to Slater) and stability of multicriteria trajectory problems”, J. Appl. Ind. Math., 10:2 (2003), 3–18 | MR

[2] V. B. Mikhailov, V. V. Rumiantsev, “Teoriia parametricheskoi chuvstvitelnosti sobstvennykh chastot i ee primenenie k analizu ustoichivosti”, Matematicheskoe modelirovanie, 24:9 (2012), 113–124 | MR | Zbl

[3] B. S. Dobronets, Intervalnaia matematika, Uchebnoe pos., KGU, Krasnoyarsk, 2004, 216 pp.

[4] A. Iu. Morozov, D. L. Reviznikov, “Modifikatsiia metodov resheniia zadachi Koshi dlia sistem obyknovennykh differentsialnykh uravnenii s intervalnymi parametrami”, Trudy MAI, 89 (2016), 15 | MR

[5] R. I. Khusnutdinov, N. A. Shchadneva, Yu. Yu. Mayakova, “Methylation of phenol and its derivatives with dimethyl carbonate in the presence of Mn$_2$(CO)$_{10}$, W(CO)$_6$, CO$_2$(CO)$_8$”, Russ. J. Org. Chem., 51:3 (2014), 330–334 | DOI

[6] R. I. Khusnutdinov, N. A. Shchadneva, Yu. Yu. Mayakova, G. Z. Raskildina, S. S. Zlotskii, “Methylation and carboxymethylation of oxyalkyl-1,3-dioxacycloalkanes with dimethyl carbonate catalyzed by W(CO)$_6$ and MN$_2$(CO)$_{10}$”, Russ. J. Gen. Chem., 85:8 (2015), 1826–1829 | DOI

[7] R. I. Khusnutdinov, N. A. Shchadneva, Yu. Yu. Mayakova, “Reactions of diols with dimethyl carbonate in the presence of W(CO)$_6$ and Co$_2$(CO)$_8$”, Russ. J. Org. Chem., 50:7 (2014), 948–952 | DOI

[8] K. F. Koledina, S. N. Koledin, N. A. Shchadneva, I. M. Gubaidullin, “Kinetics and mechanism of the catalytic reaction between alcohols and dimethyl carbonate”, Russian Journal of Physical Chemistry A, 91:3 (2017), 442–447 | DOI

[9] K. F. Koledina, S. N. Koledin, N. A. Schadneva, Y. Yu. Mayakova, I. M. Gubaydullin, “Kinetic model of the catalytic reaction of dimethylcarbonate with alcohols in the presence Co$_2$(CO)$_8$ and W(CO)$_6$”, Reaction Kinetics, Mechanisms and Catalysis, 121:2 (2017), 425–438 | DOI

[10] N. S. Nedialkov, K. R. Jackson, J. D. Pryce, “An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE”, Reliable Computing, 7:6 (2001), 449–465 | DOI | MR | Zbl

[11] Y. Lin, M. A. Stadtherr, “Validated solutions of initial value problems for parametric ODEs”, Applied Numerical Mathematics, 57:10 (2007), 1145–1162 | DOI | MR | Zbl

[12] K. Koledina, I. Gubaydullin, S. Koledin, “Parameter Analysis of Stability of the Pareto Front for Optimal Conditions of Catalytic Processes”, Lobachevskii Journal of Mathematics, 42:12 (2021), 2834–2840 | DOI | MR | Zbl

[13] T. A. Frolova, S. V. Frolov, D. S. Tuliakov, “Reshenie intervalnykh matematicheskikh modelei tekhnologicheskikh protsessov”, Nauka i obrazovanie. MGTU im. N.E. Baumana, 2012, no. 9, 343–360

[14] V. M. Belov, V. V. Evstigneev, S. M. Korolkova, E. V. Lagutkina, V. A. Sukhanov, “Intervalnaia kinetika khimicheskikh reaktsii. Obratimye reaktsii pervogo poriadka”, Khimiia rastitelnogo syria, 1997, no. 3, 31–34

[15] M. V. Sakhibgareeva, “Interval algorithm for the global search of uncertainty domains in simulating the kinetics of complex chemical reactions”, Theoretical Foundations of Chemical Engineering, 53:3 (2019), 389–394 | DOI | MR

[16] C. V. Gear, Numerical initial value problems in ordinary differential equations, Pentice-Hall, Englewood Cliffs, 1971, 252 pp. | MR

[17] A. V. Attetkov, S. V. Galkin, V. S. Zarubin, Metod Khuka-Dzhivsa. Metody optimizatsii, Izd-vo MGTU im. N.E. Baumana, M., 2003, 440 pp.

[18] A. V. Lotov, A. I. Ryabikov, “Launch pad method in multiextremal multiobjective optimization problems”, Comp. Math. and Math. Phys., 59:12 (2019), 2041–2056 | DOI | MR | Zbl

[19] K. F. Koledina, S. N. Koledin, A. P. Karpenko, I. M. Gubaydullin, M. K. Vovdenko, “Multi-objective optimization of chemical reaction conditions based on a kinetic model”, Journal of Mathematical Chemistry, 57:2, February (2019), 484–493 | DOI | MR | Zbl

[20] K. F. Koledina, S. N. Koledin, L. F. Nurislamova, I. M. Gubaydullin, “Internal parallelism of multi-objective optimization and optimal control based on a compact kinetic model for the catalytic reaction of dimethyl carbonate with alcohols”, Communications in Computer and Information Science, 1063 (2019), 242–255 | DOI | MR

[21] Iu. A. Belov, A. L. Zavorotnyi, A. I. Chulichkov, M. M. Belova, “Obrabotka izmerenii v usloviiakh nechetkosti na osnove mnogokriterialnoi optimizatsii”, Matematicheskoe modelirovanie, 18:11 (2006), 55–60 | MR | Zbl

[22] S. N. Koledin, K. F. Koledina, A. P. Karpenko, I. M. Gubaidullin, “Informatsionnaia sistema dlia otsenki vzaimosviazi tselevykh funktsii i issledovaniia optimalnykh uslovii provedeniia slozhnoi kataliticheskoi reaktsii metodami mnogotselevoi optimizatsii”, Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 13:4 (2017), 71–80 | MR

[23] K. Deb, M. Mohan, S. Mishra, “Towards a quick computation of well-spread Pareto-optimal solutions”, Evolutionary Multi-Criterion Optimization, 2003, 222–236, Springer | DOI | MR | Zbl

[24] N. Srinivas, K. Deb, “Muiltiobjective optimization using nondominated sorting in genetic algorithms”, Evolutionary computation, 2:3 (1994), 221–248 | DOI

[25] K. F. Koledina, S. N. Koledin, I. M. Gubaydullin, “Automated system for identification of conditions for homogeneous and heterogeneous reactions in multiobjective optimization problems”, Numerical Analysis and Applications, 12:2 (2019), 116–125 | DOI | MR | MR