Numerical simulation of dynamic processes in the medium of fine-grained solid particles
Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 73-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simplified model system of governing equations describing the motion of an ensemble of solid fine-grained particles arising in the continual description of two-phase disperse media is considered. Specific features of this system are discontinuity in the characteristic velocity of small disturbance propagation when the volume fraction equals the value of close packing and possibility of forming void regions free of particles. A modification to the Godunov method based on the exact solution to the Riemann problem and an approximate HLL-type solver is proposed for the system considered which takes into account the mentioned specific features. Verification of the methods developed is performed on a set of test problems that are analogues of well-known in gas dynamics benchmarks by Sod and Shu-Osher. The problem of decompaction of a side-wall layer of compressed particles is also considered. The mechanism of particle detachment and development of a near-wall void zone free of particles is described. The obtained numerical results are compared with the available analytical data.
Keywords: two-phase disperse media, continuum model of ensemble of solid particles, Riemann problem, Godunov method.
@article{MM_2022_34_8_a4,
     author = {M. Y. Nemtsev and I. S. Menshov and I. V. Semenov},
     title = {Numerical simulation of dynamic processes in the medium of fine-grained solid particles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--96},
     publisher = {mathdoc},
     volume = {34},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/}
}
TY  - JOUR
AU  - M. Y. Nemtsev
AU  - I. S. Menshov
AU  - I. V. Semenov
TI  - Numerical simulation of dynamic processes in the medium of fine-grained solid particles
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 73
EP  - 96
VL  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/
LA  - ru
ID  - MM_2022_34_8_a4
ER  - 
%0 Journal Article
%A M. Y. Nemtsev
%A I. S. Menshov
%A I. V. Semenov
%T Numerical simulation of dynamic processes in the medium of fine-grained solid particles
%J Matematičeskoe modelirovanie
%D 2022
%P 73-96
%V 34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/
%G ru
%F MM_2022_34_8_a4
M. Y. Nemtsev; I. S. Menshov; I. V. Semenov. Numerical simulation of dynamic processes in the medium of fine-grained solid particles. Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 73-96. http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/

[1] Y.P. Khomenko, A.N. Ischenko, V.Z. Kasimov, Matematicheskoe modelirovanie vnutriballisticheskikh protsessov v stvol'nykh sistemakh, Izd-vo SO RAN, Novosibirsk, 1999

[2] I. S. Menshov, M. Y. Nemtsev, I. V. Semenov, “Numerical modeling of wave processes accompanying combustion of inhomogeneously distributed composite propellant”, Computational Mathematics and Mathematical Physics, 59:9 (2019), 1528–1541 | DOI | MR | Zbl

[3] B. C. Fan et al, “Interaction of a shock wave with a loose dusty bulk layer”, Shock Waves, 16:3 (2007), 179–187 | DOI

[4] M. R. Baer, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International Journal of Multiphase Flow, 12:6 (1986), 861–889 | DOI | MR | Zbl

[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Ch. 2, Nauka, 1987

[6] R. Saurel, R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows”, Journal of Computational Physics, 150:2 (1999), 425–467 | DOI | MR | Zbl

[7] R. W. Houim, E. S. Oran, “A multiphase model for compressible granular-gaseous flows: formulation and initial tests”, Journal of fluid mechanics, 789 (2016), 166–220 | DOI | MR | Zbl

[8] T. P. McGrath, J. G.St. Clair, S. Balachandar, “A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes”, Journal of Applied Physics, 119:17 (2016), 174903 | DOI

[9] R. Saurel, A. Chinnayya, Q. Carmouze, “Modelling compressible dense and dilute two-phase flows”, Physics of fluids, 29:6 (2017), 063301 | DOI

[10] A. N. Kraiko, L. E. Sternin, “Theory of flows of a two-velocity continuous medium containing solid or liquid particles”, J. of Applied Math. Mechanics, 29:3 (1965), 482–496 | DOI | MR

[11] A.N. Kraiko, “On correctness of the cauchy problem for a two-fluid model of a gas flow containing particles”, J. of Applied Math. and Mechanics, 46:3 (1982), 327–333 | DOI | MR | Zbl

[12] A.N. Kraiko, “The Mathematical Models for Description of Flow of Gas and Foreign Particles and for Non-Stationary Filtration of Liquids and Gas in Porous Medium”, Vestnik YuUrGU. Ser. Matematicheskoe Modelirovanie i Programmirovanie, 7:1 (2014), 34–48 | Zbl

[13] A.N. Osiptsov, “Investigation of regions of unbounded growth of the particle concentration in disperse flows”, Fluid Dynamics, 19:3 (1984), 378–385 | DOI | MR | Zbl

[14] A.N. Osiptsov, “Motion of a dusty gas at the entrance to a flat channel and a circular pipe”, Fluid Dynamics, 23:6 (1988), 867–874 | DOI | MR | Zbl

[15] Y.G. Rykov, “Solutions with Substance Decay in Pressureless Gas Dynamics Systems”, Mathematical Notes, 108:3 (2020), 465–468 | DOI | MR | Zbl

[16] N. V. Klyushnev, Y. G. Rykov, “Non-Conventional and Conventional Solutions for One-Dimensional Pressureless Gas”, Lobachevskii J. of Math., 42:11 (2021), 2615–2625 | DOI | MR | Zbl

[17] R. Saurel et al., “Modelling dynamic and irreversible powder compaction”, Journal of Fluid Mechanics, 664 (2010), 348–396 | DOI | MR | Zbl

[18] D. Rochette, S. Clain, W. Bussiere, “Unsteady compressible flow in ducts with varying cross-section: Comparison between the nonconservative Euler system and the axisymmetric flow model”, Computers fluids, 53 (2012), 53–78 | DOI | MR | Zbl

[19] S. Clain, D. Rochette, “First-and second-order finite volume methods for the one-dimensional nonconservative Euler system”, J. of Comp. Phys., 228:22 (2009), 8214–8248 | DOI | MR | Zbl

[20] I.S. Menshov, “Exact and approximate Riemann solvers for compressible two-phase flows”, Mathematical Models and Computer Simulations, 9:4 (2017), 405–422 | DOI | MR | Zbl

[21] P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The theory of classical and nonclassical shock waves, Springer Science Business Media, 2002 | MR

[22] A. Serezhkin, I. Menshov, “On solving the Riemann problem for non-conservative hyperbolic systems of partial differential equations”, Computers Fluids, 210 (2020), 104675 | DOI | MR | Zbl

[23] B. Einfeldt et al, “On Godunov-type methods near low densities”, J. of Comp. Physics, 92:2 (1991), 273–295 | DOI | MR | Zbl

[24] B. van Leer, H. Nishikawa, “Towards the ultimate understanding of MUSCL: Pitfalls in achieving third-order accuracy”, Journal of Computational Physics, 446 (2021), 110640 | DOI | MR | Zbl

[25] G. D. van Albada, B. van Leer, W. Roberts, “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108 (1982)

[26] A.V. Rodionov, “Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows”, USSR CM MP, 27:2 (1987), 175–180 | MR | MR | Zbl

[27] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, 1973 | MR | Zbl

[28] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science Business Media, 2013 | MR

[29] C. W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, Upwind and High-Resolution Schemes, Springer, Berlin–Heidelberg, 1989, 328–374 | DOI | MR