Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_8_a4, author = {M. Y. Nemtsev and I. S. Menshov and I. V. Semenov}, title = {Numerical simulation of dynamic processes in the medium of fine-grained solid particles}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {73--96}, publisher = {mathdoc}, volume = {34}, number = {8}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/} }
TY - JOUR AU - M. Y. Nemtsev AU - I. S. Menshov AU - I. V. Semenov TI - Numerical simulation of dynamic processes in the medium of fine-grained solid particles JO - Matematičeskoe modelirovanie PY - 2022 SP - 73 EP - 96 VL - 34 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/ LA - ru ID - MM_2022_34_8_a4 ER -
%0 Journal Article %A M. Y. Nemtsev %A I. S. Menshov %A I. V. Semenov %T Numerical simulation of dynamic processes in the medium of fine-grained solid particles %J Matematičeskoe modelirovanie %D 2022 %P 73-96 %V 34 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/ %G ru %F MM_2022_34_8_a4
M. Y. Nemtsev; I. S. Menshov; I. V. Semenov. Numerical simulation of dynamic processes in the medium of fine-grained solid particles. Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 73-96. http://geodesic.mathdoc.fr/item/MM_2022_34_8_a4/
[1] Y.P. Khomenko, A.N. Ischenko, V.Z. Kasimov, Matematicheskoe modelirovanie vnutriballisticheskikh protsessov v stvol'nykh sistemakh, Izd-vo SO RAN, Novosibirsk, 1999
[2] I. S. Menshov, M. Y. Nemtsev, I. V. Semenov, “Numerical modeling of wave processes accompanying combustion of inhomogeneously distributed composite propellant”, Computational Mathematics and Mathematical Physics, 59:9 (2019), 1528–1541 | DOI | MR | Zbl
[3] B. C. Fan et al, “Interaction of a shock wave with a loose dusty bulk layer”, Shock Waves, 16:3 (2007), 179–187 | DOI
[4] M. R. Baer, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International Journal of Multiphase Flow, 12:6 (1986), 861–889 | DOI | MR | Zbl
[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Ch. 2, Nauka, 1987
[6] R. Saurel, R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows”, Journal of Computational Physics, 150:2 (1999), 425–467 | DOI | MR | Zbl
[7] R. W. Houim, E. S. Oran, “A multiphase model for compressible granular-gaseous flows: formulation and initial tests”, Journal of fluid mechanics, 789 (2016), 166–220 | DOI | MR | Zbl
[8] T. P. McGrath, J. G.St. Clair, S. Balachandar, “A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes”, Journal of Applied Physics, 119:17 (2016), 174903 | DOI
[9] R. Saurel, A. Chinnayya, Q. Carmouze, “Modelling compressible dense and dilute two-phase flows”, Physics of fluids, 29:6 (2017), 063301 | DOI
[10] A. N. Kraiko, L. E. Sternin, “Theory of flows of a two-velocity continuous medium containing solid or liquid particles”, J. of Applied Math. Mechanics, 29:3 (1965), 482–496 | DOI | MR
[11] A.N. Kraiko, “On correctness of the cauchy problem for a two-fluid model of a gas flow containing particles”, J. of Applied Math. and Mechanics, 46:3 (1982), 327–333 | DOI | MR | Zbl
[12] A.N. Kraiko, “The Mathematical Models for Description of Flow of Gas and Foreign Particles and for Non-Stationary Filtration of Liquids and Gas in Porous Medium”, Vestnik YuUrGU. Ser. Matematicheskoe Modelirovanie i Programmirovanie, 7:1 (2014), 34–48 | Zbl
[13] A.N. Osiptsov, “Investigation of regions of unbounded growth of the particle concentration in disperse flows”, Fluid Dynamics, 19:3 (1984), 378–385 | DOI | MR | Zbl
[14] A.N. Osiptsov, “Motion of a dusty gas at the entrance to a flat channel and a circular pipe”, Fluid Dynamics, 23:6 (1988), 867–874 | DOI | MR | Zbl
[15] Y.G. Rykov, “Solutions with Substance Decay in Pressureless Gas Dynamics Systems”, Mathematical Notes, 108:3 (2020), 465–468 | DOI | MR | Zbl
[16] N. V. Klyushnev, Y. G. Rykov, “Non-Conventional and Conventional Solutions for One-Dimensional Pressureless Gas”, Lobachevskii J. of Math., 42:11 (2021), 2615–2625 | DOI | MR | Zbl
[17] R. Saurel et al., “Modelling dynamic and irreversible powder compaction”, Journal of Fluid Mechanics, 664 (2010), 348–396 | DOI | MR | Zbl
[18] D. Rochette, S. Clain, W. Bussiere, “Unsteady compressible flow in ducts with varying cross-section: Comparison between the nonconservative Euler system and the axisymmetric flow model”, Computers fluids, 53 (2012), 53–78 | DOI | MR | Zbl
[19] S. Clain, D. Rochette, “First-and second-order finite volume methods for the one-dimensional nonconservative Euler system”, J. of Comp. Phys., 228:22 (2009), 8214–8248 | DOI | MR | Zbl
[20] I.S. Menshov, “Exact and approximate Riemann solvers for compressible two-phase flows”, Mathematical Models and Computer Simulations, 9:4 (2017), 405–422 | DOI | MR | Zbl
[21] P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The theory of classical and nonclassical shock waves, Springer Science Business Media, 2002 | MR
[22] A. Serezhkin, I. Menshov, “On solving the Riemann problem for non-conservative hyperbolic systems of partial differential equations”, Computers Fluids, 210 (2020), 104675 | DOI | MR | Zbl
[23] B. Einfeldt et al, “On Godunov-type methods near low densities”, J. of Comp. Physics, 92:2 (1991), 273–295 | DOI | MR | Zbl
[24] B. van Leer, H. Nishikawa, “Towards the ultimate understanding of MUSCL: Pitfalls in achieving third-order accuracy”, Journal of Computational Physics, 446 (2021), 110640 | DOI | MR | Zbl
[25] G. D. van Albada, B. van Leer, W. Roberts, “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108 (1982)
[26] A.V. Rodionov, “Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows”, USSR CM MP, 27:2 (1987), 175–180 | MR | MR | Zbl
[27] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, 1973 | MR | Zbl
[28] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science Business Media, 2013 | MR
[29] C. W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, Upwind and High-Resolution Schemes, Springer, Berlin–Heidelberg, 1989, 328–374 | DOI | MR