Calculation of the solar radiation field in the general circulation model of the Earth's lower and middle atmosphere
Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 38-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of testing two radiation blocks used for economical calculation of radiation transfer in the general circulation model of the lower and middle atmosphere of the Earth are presented. The first block is designed to calculate the field of intrinsic radiation in the frequency range from 10 to 3000 cm$^{-1}$, and the second block is designed to calculate the field of solar radiation in the frequency range from 2000 to 50,000 cm$^{-1}$. Each of these blocks uses its own parameterization of the optical parameters of the air in the altitude range from the Earth's surface to 90 km. When constructing these parameterizations, the change in the gas composition of the atmosphere with altitude was taken into account. For the numerical solution of the radiation transfer equation, the method of discrete ordinates is used. The results of calculations performed using the radiation block of the model are compared with the results of line-by-line calculations of the solar radiation field in the lower and middle atmosphere of the Earth, performed with a very high frequency resolution. It is shown that the model block provides good accuracy of calculations both in the absence of clouds and in the presence of cloud layers with a large optical thickness.
Keywords: general circulation model of the Earth's atmosphere, intrinsic radiation in the atmosphere, solar radiation in the atmosphere.
@article{MM_2022_34_8_a2,
     author = {E. A. Fedotova},
     title = {Calculation of the solar radiation field in the general circulation model of the {Earth's} lower and middle atmosphere},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {38--58},
     publisher = {mathdoc},
     volume = {34},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_8_a2/}
}
TY  - JOUR
AU  - E. A. Fedotova
TI  - Calculation of the solar radiation field in the general circulation model of the Earth's lower and middle atmosphere
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 38
EP  - 58
VL  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_8_a2/
LA  - ru
ID  - MM_2022_34_8_a2
ER  - 
%0 Journal Article
%A E. A. Fedotova
%T Calculation of the solar radiation field in the general circulation model of the Earth's lower and middle atmosphere
%J Matematičeskoe modelirovanie
%D 2022
%P 38-58
%V 34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_8_a2/
%G ru
%F MM_2022_34_8_a2
E. A. Fedotova. Calculation of the solar radiation field in the general circulation model of the Earth's lower and middle atmosphere. Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 38-58. http://geodesic.mathdoc.fr/item/MM_2022_34_8_a2/

[1] IU. M. Timofeev, A. V. Vasilev, Teoreticheskie osnovy atmosfernoi optiki, Nauka, SPb, 2003, 474 pp. | MR

[2] A. V. Shilkov, M. N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93–107 | DOI | MR | MR | Zbl

[3] E. N. Aristova, M. N. Gertsev, A. V. Shilkov, “Lebesgue averaging method in serial computations of atmospheric radiation”, Comput. Math. and Math. Phys., 57:6 (2017), 1022–1035 | DOI | MR | Zbl

[4] B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms”, Atmospheric and oceanic optics, 16:03 (2003), 244–246

[5] B. A. Fomin, P. M. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave”, J. Geophys. Res., 110 (2005), D02106 | DOI

[6] M. D. Chou, M. J. Suarez, A solar radiation parameterization for atmospheric studies, NASA/TM-1999-10460 Tech. Rep., Ser. Global Model. Data Assimilation, 15, NASA Goddard Space Flight Cent., Greenbelt, Md., 2002, 42 pp. | Zbl

[7] J. M. Edwards, A. Slingo, “Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-Scale Model”, Quarterly Journal of the Royal Meteorological Society, 122 (1996), 689–719 | DOI

[8] S. Cusack, J. M. Edwards, J. M. Crowther, “Investigating k-distributing method for parametrizing gaseous absorption in the Hadley Centre Climate Model”, J. Geophys. Res., 104 (1999), 2051–2057 | DOI

[9] B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, O. V. Mingalev, “Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth”, Math. Models Computer Simul., 10:2 (2018), 176–185 | DOI | MR

[10] B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, “The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the Earth”, Mathematical Models and Computer Simulations, 12:5 (2020), 803–815 | DOI | MR | MR | Zbl

[11] I. V. Mingalev, E. A. Fedotova, K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth's lower and middle atmosphere”, Atmospheric and Oceanic Optics, 31:6 (2018), 582–589 | DOI | MR

[12] I. V. Mingalev, K. G. Orlov, E. A. Fedotova, “Vliianie opticheski tolstyh sloev na nagrev atmosfery sobstvennym izlucheniem”, Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa, 14:5 (2017), 100–108

[13] I. V. Mingalev, K. G. Orlov, E. A. Fedotova, “Allowing for Local Thermodynamic Non-Equilibrium in the Vibrational Bands of Carbon Dioxide Molecules in the Radiation Block of the Model of the General Circulation of Earth's Atmosphere”, Bulletin of the Russian Academy of Sciences: Physics, 85:3 (2021), 282–286 | DOI | MR

[14] B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, “Blok rascheta solnechnogo izlucheniia atmosfery v modeli obshchei tsirkuliatsii nizhnei i srednei atmosfery Zemli”, Matem. Modelirovanie, 34:3 (2022), 43–70 | MR | Zbl

[15] L. S. Rothman et al., “The HITRAN2012 molecular spectroscopic database”, J. Quant. Spectrosc. Rad. Transfer, 130 (2013), 4–50 | DOI

[16] E. J. Mlawer et al., “Development and recent evaluation of the MT CKD model of continuum absorption”, Phylosophical Transactions of the Royal Soc., 370 (2012), 2520–2556

[17] N. I. Ignat'ev, I. V. Mingalev, A. V. Rodin, E. A. Fedotova, “A New Version of the Discrete Ordinate Method for the Calculation of the Intrinsic Radiation in Horizontally Homogeneous Atmospheres”, Comp. Math. Math. Phys., 55:10 (2015), 1713–1726 | DOI | MR

[18] R. A. McClatchey, H.J. Bolle, K. Ya. Kondratyev, A preliminary cloudless standard atmosphere for radiation computation, World Climate Res. Prog., WCP 112, WMO/TD-N24, Intern. Association for Meteorology Atmospheric Phys., Radiation Commission, 1986, 60 pp.