Origins of turbulence on an unswept wing of supersonic transport
Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 19-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two most likely sources of disturbances capable of triggering boundary layer turbulization over the smooth unswept wing of supersonic transport are considered in the framework of full Navier-Stokes equations, namely: atmospheric turbulence and acoustic noise radiated by the turbulent boundary layer over the fuselage. Frequency wave characteristics of boundary layer disturbances over the wing are analyzed; the dominant mechanism of transition is revealed. Numerical results are compared with those of linear stability theory.
Keywords: supersonic transport, SST, unswept wing, origins of turbulence, atmospheric turbulence, numerical simulation, laminarization.
Mots-clés : acoustic noise
@article{MM_2022_34_8_a1,
     author = {P. V. Chuvakhov and I. O. Pogorelov},
     title = {Origins of turbulence on an unswept wing of supersonic transport},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--37},
     publisher = {mathdoc},
     volume = {34},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/}
}
TY  - JOUR
AU  - P. V. Chuvakhov
AU  - I. O. Pogorelov
TI  - Origins of turbulence on an unswept wing of supersonic transport
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 19
EP  - 37
VL  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/
LA  - ru
ID  - MM_2022_34_8_a1
ER  - 
%0 Journal Article
%A P. V. Chuvakhov
%A I. O. Pogorelov
%T Origins of turbulence on an unswept wing of supersonic transport
%J Matematičeskoe modelirovanie
%D 2022
%P 19-37
%V 34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/
%G ru
%F MM_2022_34_8_a1
P. V. Chuvakhov; I. O. Pogorelov. Origins of turbulence on an unswept wing of supersonic transport. Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 19-37. http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/

[1] B. Liebhardta, K. Lütjensb, R. R. Tracyc et al., 17th AIAA aviation technology, integration, and operations conference, AIAA paper 2017-3588, 2017

[2] E. Reshotko, “Boundary layer stability and transition”, Annu. Rev. Fluid Mech., 8 (1976), 311–349 | DOI

[3] D. Bushnell, “Notes on initial disturbance fields for the transition problem”, Instability and Transition, v. I, eds. M.Y. Hussaini, R. G. Voigt, Springer, 1990, 217–232 | MR

[4] V. N. Zhigulev, A. V. Fedorov, “Vospriimchivost pogranichnogo sloia k akusticheskim vozmushcheniiam”, PMTF, 1987, no. 1, 30–37

[5] A. V. Fedorov, Receptivity of hypersonic boundary layer to acoustic disturbances scattered by surface roughness, AIAA Paper No 2003-3731

[6] R. P. Turco, “Upper-atmosphere aerosols: properties and natural cycles”, The Atmospheric Effects of Stratospheric Aircraft: A First Program Report, NASA RP-1272, Chap. 3B, 1992, 63–91

[7] M. A. Pugach, A. A. Ryzhov, A. V. Fedorov, “Estimation of the effect of free-stream turbulence and solid particles on the laminar-turbulent transition at hypersonic speeds”, TsAGI Science Journal, 47:1 (2016), 15–28 | DOI | MR

[8] A. V. Fedorov, “Receptivity of a supersonic boundary layer to solid particulates”, J. Fluid Mech., 737 (2013), 105–131 | DOI | MR | Zbl

[9] P. V. Chuvakhov, A. V. Fedorov, A. O. Obraz, “Numerical modelling of supersonic boundary-layer receptivity to solid particulates”, J. Fluid Mech., 859 (2019), 949–971 | DOI | MR | Zbl

[10] I. V. Egorov, A. V. Fedorov, A. V. Novikov, P. V. Chuvakhov, “The Role of Receptivity in Prediction of High-Speed Laminar-Turbulent Transition”, Proc. IUTAM Symposium on Laminar-Turbulent Transition (2019, London, UK, 2-6th September), Springer IUTAM Bookseries, 1–11 (to appear) | MR

[11] J. D. McMinn, AIAA Guidance, Navigation, and Control Conference, AIAA paper 97-3532 (New Orleans, LA, USA), 1997

[12] D. Yu. Adamian, M. Kh. Strelets, A. K. Travin, “An efficient method of synthetic turbulence generation at les inflow in zonal RANS-LES approaches to computation of turbulent flows”, Matematicheskoe modelirovanie, 23:7 (2011), 3–19

[13] Y.-H. Pao, “Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers”, Physics of Fluids, 8:6 (1965)

[14] S. R. Pate, Effects of wind tunnel disturbances on boundary-layer transition with emphasis on radiated noise: A review, AIAA Paper No 80-0431, 1980

[15] L. Duan, M. M. Choudhari, M. Wu, “Numerical study of acoustic radiation due to a supersonic turbulent boundary layer”, J. Fluid Mech., 746 (2014), 165–192 | DOI

[16] I. V. Egorov, A. V. Novikov, “Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 1048–1064 | DOI | MR | Zbl

[17] J. Laufer, “Some statistical properties of the pressure field radiated by a turbulent boundary layer”, The Physics of Fluids, 1964, 1191–1197 | DOI | Zbl

[18] P. V. Chuvakhov, A. V. Fedorov, I. O. Pogorelov, “Mechanisms of natural laminar-turbulent transition on an unswept wing in supersonic flight”, Proceedings of 32nd Congress of the International Council of the Aeronautical Sciences, 2020, ICAS2020_0657 https://www.icas.org/ICAS_ARCHIVE/ICAS2020/data/preview/ICAS2020_0657.htm

[19] H. F. Hrubecky, “An approximate analysis for the turbulent boundary layer thickness on a cone in supersonic flow”, Appl. sci. Res., Section A, 11 (1963), 441–450 | DOI | Zbl

[20] P. V. Chuvakhov, A. V. Fedorov, A. O. Obraz, I. M. Ilyukhin, “Disturbance evolution over an upswept wing in a Mach 3 flow”, AIP Conference Proc., 2351, 2021 | DOI

[21] A. O. Obraz, A. V. Fedorov, “Analiz ustoichivosti techeniia nad tonkim parabolicheskim profilem pri chisle Makha 3”, Tezisy dokladov XIV Vserossiiskoi shkoly-konferentsii molodykh uchenykh “Problemy mekhaniki: teoriia, eksperiment i novye tekhnologii” (2020, Novosibirsk-Sheregesh), 143–144

[22] C. Hader, H. F. Fasel, “Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown”, J. Fluid Mech., 869 (2019), 341–384 | DOI | MR | Zbl