Origins of turbulence on an unswept wing of supersonic transport
Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 19-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two most likely sources of disturbances capable of triggering boundary layer turbulization over the smooth unswept wing of supersonic transport are considered in the framework of full Navier-Stokes equations, namely: atmospheric turbulence and acoustic noise radiated by the turbulent boundary layer over the fuselage. Frequency wave characteristics of boundary layer disturbances over the wing are analyzed; the dominant mechanism of transition is revealed. Numerical results are compared with those of linear stability theory.
Keywords: supersonic transport, SST, unswept wing, origins of turbulence, atmospheric turbulence, numerical simulation, laminarization.
Mots-clés : acoustic noise
@article{MM_2022_34_8_a1,
     author = {P. V. Chuvakhov and I. O. Pogorelov},
     title = {Origins of turbulence on an unswept wing of supersonic transport},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--37},
     year = {2022},
     volume = {34},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/}
}
TY  - JOUR
AU  - P. V. Chuvakhov
AU  - I. O. Pogorelov
TI  - Origins of turbulence on an unswept wing of supersonic transport
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 19
EP  - 37
VL  - 34
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/
LA  - ru
ID  - MM_2022_34_8_a1
ER  - 
%0 Journal Article
%A P. V. Chuvakhov
%A I. O. Pogorelov
%T Origins of turbulence on an unswept wing of supersonic transport
%J Matematičeskoe modelirovanie
%D 2022
%P 19-37
%V 34
%N 8
%U http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/
%G ru
%F MM_2022_34_8_a1
P. V. Chuvakhov; I. O. Pogorelov. Origins of turbulence on an unswept wing of supersonic transport. Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 19-37. http://geodesic.mathdoc.fr/item/MM_2022_34_8_a1/

[1] B. Liebhardta, K. Lütjensb, R. R. Tracyc et al., 17th AIAA aviation technology, integration, and operations conference, AIAA paper 2017-3588, 2017

[2] E. Reshotko, “Boundary layer stability and transition”, Annu. Rev. Fluid Mech., 8 (1976), 311–349 | DOI

[3] D. Bushnell, “Notes on initial disturbance fields for the transition problem”, Instability and Transition, v. I, eds. M.Y. Hussaini, R. G. Voigt, Springer, 1990, 217–232 | MR

[4] V. N. Zhigulev, A. V. Fedorov, “Vospriimchivost pogranichnogo sloia k akusticheskim vozmushcheniiam”, PMTF, 1987, no. 1, 30–37

[5] A. V. Fedorov, Receptivity of hypersonic boundary layer to acoustic disturbances scattered by surface roughness, AIAA Paper No 2003-3731

[6] R. P. Turco, “Upper-atmosphere aerosols: properties and natural cycles”, The Atmospheric Effects of Stratospheric Aircraft: A First Program Report, NASA RP-1272, Chap. 3B, 1992, 63–91

[7] M. A. Pugach, A. A. Ryzhov, A. V. Fedorov, “Estimation of the effect of free-stream turbulence and solid particles on the laminar-turbulent transition at hypersonic speeds”, TsAGI Science Journal, 47:1 (2016), 15–28 | DOI | MR

[8] A. V. Fedorov, “Receptivity of a supersonic boundary layer to solid particulates”, J. Fluid Mech., 737 (2013), 105–131 | DOI | MR | Zbl

[9] P. V. Chuvakhov, A. V. Fedorov, A. O. Obraz, “Numerical modelling of supersonic boundary-layer receptivity to solid particulates”, J. Fluid Mech., 859 (2019), 949–971 | DOI | MR | Zbl

[10] I. V. Egorov, A. V. Fedorov, A. V. Novikov, P. V. Chuvakhov, “The Role of Receptivity in Prediction of High-Speed Laminar-Turbulent Transition”, Proc. IUTAM Symposium on Laminar-Turbulent Transition (2019, London, UK, 2-6th September), Springer IUTAM Bookseries, 1–11 (to appear) | MR

[11] J. D. McMinn, AIAA Guidance, Navigation, and Control Conference, AIAA paper 97-3532 (New Orleans, LA, USA), 1997

[12] D. Yu. Adamian, M. Kh. Strelets, A. K. Travin, “An efficient method of synthetic turbulence generation at les inflow in zonal RANS-LES approaches to computation of turbulent flows”, Matematicheskoe modelirovanie, 23:7 (2011), 3–19

[13] Y.-H. Pao, “Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers”, Physics of Fluids, 8:6 (1965)

[14] S. R. Pate, Effects of wind tunnel disturbances on boundary-layer transition with emphasis on radiated noise: A review, AIAA Paper No 80-0431, 1980

[15] L. Duan, M. M. Choudhari, M. Wu, “Numerical study of acoustic radiation due to a supersonic turbulent boundary layer”, J. Fluid Mech., 746 (2014), 165–192 | DOI

[16] I. V. Egorov, A. V. Novikov, “Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 1048–1064 | DOI | MR | Zbl

[17] J. Laufer, “Some statistical properties of the pressure field radiated by a turbulent boundary layer”, The Physics of Fluids, 1964, 1191–1197 | DOI | Zbl

[18] P. V. Chuvakhov, A. V. Fedorov, I. O. Pogorelov, “Mechanisms of natural laminar-turbulent transition on an unswept wing in supersonic flight”, Proceedings of 32nd Congress of the International Council of the Aeronautical Sciences, 2020, ICAS2020_0657 https://www.icas.org/ICAS_ARCHIVE/ICAS2020/data/preview/ICAS2020_0657.htm

[19] H. F. Hrubecky, “An approximate analysis for the turbulent boundary layer thickness on a cone in supersonic flow”, Appl. sci. Res., Section A, 11 (1963), 441–450 | DOI | Zbl

[20] P. V. Chuvakhov, A. V. Fedorov, A. O. Obraz, I. M. Ilyukhin, “Disturbance evolution over an upswept wing in a Mach 3 flow”, AIP Conference Proc., 2351, 2021 | DOI

[21] A. O. Obraz, A. V. Fedorov, “Analiz ustoichivosti techeniia nad tonkim parabolicheskim profilem pri chisle Makha 3”, Tezisy dokladov XIV Vserossiiskoi shkoly-konferentsii molodykh uchenykh “Problemy mekhaniki: teoriia, eksperiment i novye tekhnologii” (2020, Novosibirsk-Sheregesh), 143–144

[22] C. Hader, H. F. Fasel, “Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown”, J. Fluid Mech., 869 (2019), 341–384 | DOI | MR | Zbl