Parallel implementation of the 16th-order multioperator scheme: application to problems of instability of vortices and boundary layers
Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of schemes for the Euler and Navier-Stokes equations is considered based on multioperator approximations of derivatives with inversion of two-point operators and allowing for very high orders. The general idea of MPI-parallelization of the type of algorithms under consideration as well as the evaluation of parallel efficiency is described. The results of direct numerical simulation of the occurrence and development of instability of two types are presented, i.e. the instability of a Gaussian-type vortex in a subsonic flow and the Tollmien-Schlichting instability in a subsonic boundary layer. A common feature of these calculations was the absence of any artificial excitations. The "exciters" of instability were small differences between numerical solutions and exact ones, the broadband spectra of which may indicate some analogy with the natural turbulent background in real flows.
Keywords: schemes with multioperators approximations, parallel efficiency, Euler and Navier-Stokes equations, instability of vortices and boundary layers.
@article{MM_2022_34_8_a0,
     author = {M. V. Lipavskii and A. I. Tolstykh and D. A. Shirobokov},
     title = {Parallel implementation of the 16th-order multioperator scheme: application to problems of instability of vortices and boundary layers},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {34},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_8_a0/}
}
TY  - JOUR
AU  - M. V. Lipavskii
AU  - A. I. Tolstykh
AU  - D. A. Shirobokov
TI  - Parallel implementation of the 16th-order multioperator scheme: application to problems of instability of vortices and boundary layers
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 3
EP  - 18
VL  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_8_a0/
LA  - ru
ID  - MM_2022_34_8_a0
ER  - 
%0 Journal Article
%A M. V. Lipavskii
%A A. I. Tolstykh
%A D. A. Shirobokov
%T Parallel implementation of the 16th-order multioperator scheme: application to problems of instability of vortices and boundary layers
%J Matematičeskoe modelirovanie
%D 2022
%P 3-18
%V 34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_8_a0/
%G ru
%F MM_2022_34_8_a0
M. V. Lipavskii; A. I. Tolstykh; D. A. Shirobokov. Parallel implementation of the 16th-order multioperator scheme: application to problems of instability of vortices and boundary layers. Matematičeskoe modelirovanie, Tome 34 (2022) no. 8, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2022_34_8_a0/

[1] A. I. Tolstykh et al., “Multi operator high-order compact upwind methods for CFD parallel calculations”, Parallel Computational Fluid Dynamics, eds. D. R. Emerson et al., Elsevier, Amsterdam, 1998, 383–390

[2] A. I. Tolstykh, Kompaktnye i multioperatornye approksimatsii vysokoi tochnosti dlia uravnenii v chastnykh proizvodnykh, Nauka, M., 2015, 350 pp.

[3] A. I. Tolstykh, “Development of arbitrary-order multi operators-based schemes for parallel calculations. 1. Higher-than-fifth-order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI | MR | Zbl

[4] A. I. Tolstykh, “16th and 32nd multi operators based schemes for smooth and discontinuous solutions”, Comm. in Comput. Phys., 45 (2017), 33–45 | MR

[5] M. V. Lipavskii, A. I. Tolstykh, “Tenth-Order Accurate Multi operator Scheme and Its Application in Direct Numerical Simulation”, Comp. Math. Math. Phys., 53:4 (2013), 455–468 | DOI | MR | Zbl

[6] A. I. Tolstykh, D. A. Shirobokov, “Using 16-th Order Multioperators-Based Scheme for Supercomputer Simulation of the Initial Stage of Laminar-Turbulent Transitions”, Supercomputing. RuSCDays, Comm. in Computer and Information Sci., 1510, eds. Voevodin V., Sobolev S., Springer, Cham, 2021

[7] A. I. Tolstykh, D. A. Shirobokov, “Fast calculations of screech using highly accurate multioperators-based schemes”, Applied Acoustics, 74 (2013), 102–109 | DOI

[8] A. I. Tolstykh, M. V. Lipavski, “Instability and acoustic fields of the Rankine vortex as seen from long-term calculations with the tenth-order multi operators-based scheme”, Mathematics and Computers in Simulation, 147 (2018), 301–320 | DOI | MR | Zbl

[9] A. I. Tolstykh, M. V. Lipavskii, “General scenario and fine details of compressible Gaussian vortex unforced instability”, European J. of Mechanics B/Fluids, 87 (2021), 161–170 | DOI | MR | Zbl

[10] A. I. Tolstykh, D. A. Shirobokov, “Observing production and growth of Tollmien-Schlichting waves in subsonic flat plate boundary layer via exciters-free high fidelity numerical simulation”, Journal of Turbulence, 21:11 (2020), 632–649 | DOI | MR

[11] G. B. Schubauer, H. K. Scramstad, Laminar-boundary-layer oscillations and transition on a flat plate, NACA Rep. No 909, 1948

[12] Z. J. Wang et al, “High-order CFD methods: current status and perspective”, Int. J. Numer. Meth. Fluids, 72 (2013), 811–845 | DOI | MR | Zbl

[13] V. F. Kopiev, E. A. Leontiev, “Ob akusticheskoi neustoichivosti aksialnogo vihria”, Akusticheskii zhurnal, 29:2 (1983), 192–198

[14] I. Menshov, Y. Nakamura, “Instability of isolated compressible entropy-stratified vortices”, Phys. Fl., 17 (2005), 034102 | DOI | MR | Zbl

[15] V. I. Borodulin, V. R. Gaponenko, Y. S. Kachanov et al, “Late-Stage Transitional Boundary-Layer Structures. Direct Numerical Simulation and Experiment”, Theor. Comput. Fluid Dynamics, 15 (2002), 317–337 | DOI | Zbl

[16] K. S. Yeo, X. Zhao, Z. Y. Wang, K. C. Ng, “DNS of wavepacket evolution in a Blasius boundary layer”, J. Fluid Mech., 652 (2010), 333–372 | DOI | Zbl

[17] C. Liu, P. Lu, DNS Study on Physics of Late Boundary Layer Transition, AIAA paper 2012-0083, 2012 | DOI

[18] H. Schlichting, “Zur entstehung der turbulenz bei der plattent stromung”, Nach. Gesell. der Wiss. zu Gottingen, Math. Phys. Klasse, 1933, 181–208 | MR | Zbl