Development of unstructed code for rotating zones based on the CABARET method with improved spectral properties
Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 73-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study we develop modification of the high-resolution CABARET scheme for rotating meshes surrounded by an external fixed zone. CABARET is second-order in space and time conservative/characteristic scheme with compact stencil which has lowdissipative and low-dispersive properties and is non-oscillatory for calculations involving non-linear flow problems with a wide range of frequencies in computational aeroacoustics. To expand this method for rotor-stator interaction problem, an approximation of non-inertial terms in rotating zones for conservative steps is added, and appropriate modification of characteristic step on the sliding interface is developed. An evolutionary approach, which ensures the preservation of the fluxes of conservative variables through the contact surface is implemented. The dispersion-improved version of the scheme with an added anti-dispersion term expressed via a flux derivative is added as well as a modification of the non-linear flux correction algorithm with reduced dissipation. For testing, the problem of acoustic wave propagation through rotating zones and sliding interfaces is considered. It is shown that the developed CABARET method for rotating zones retains the main characteristics of the baseline CABARET algorithm on fixed meshes.
Keywords: CABARET conservative scheme, non-inertial terms, sliding interface.
@article{MM_2022_34_7_a5,
     author = {I. A. Solntsev and S. A. Karabasov},
     title = {Development of unstructed code for rotating zones based on the {CABARET} method with improved spectral properties},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--92},
     publisher = {mathdoc},
     volume = {34},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_7_a5/}
}
TY  - JOUR
AU  - I. A. Solntsev
AU  - S. A. Karabasov
TI  - Development of unstructed code for rotating zones based on the CABARET method with improved spectral properties
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 73
EP  - 92
VL  - 34
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_7_a5/
LA  - ru
ID  - MM_2022_34_7_a5
ER  - 
%0 Journal Article
%A I. A. Solntsev
%A S. A. Karabasov
%T Development of unstructed code for rotating zones based on the CABARET method with improved spectral properties
%J Matematičeskoe modelirovanie
%D 2022
%P 73-92
%V 34
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_7_a5/
%G ru
%F MM_2022_34_7_a5
I. A. Solntsev; S. A. Karabasov. Development of unstructed code for rotating zones based on the CABARET method with improved spectral properties. Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 73-92. http://geodesic.mathdoc.fr/item/MM_2022_34_7_a5/

[1] V. M. Goloviznin, A. A. Samarski, “Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rasshchepleniem vremennoi proizvodnoi”, Matem. Mod, 10:1 (1998), 86–100 | MR | Zbl

[2] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. of Computational Physics, 228 (2009), 7426–7451 | DOI | MR | Zbl

[3] A. Chintagunta, S. E. Naghibi, S. A. Karabasov, “Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems”, Computers Fluids, 169 (2018), 11–128 | MR

[4] V. A. Semiletov, S. A. Karabasov, “CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems”, J. of Comp. Physics, 253 (2013), 157–165 | DOI | MR | Zbl

[5] J. E. Ffowcs Williams, D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion”, Philosophical Transactions of the Royal Soc. of London. Ser. A, Mathematical and Physical Sciences, 264:1151 (1969), 321–342 | Zbl

[6] G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov, V. G. Kondakov, V. F. Kopiev, M. A. Zaiitsev, “CABARET method on unstructured hexahedral grids for jet noise computation”, Computers Fluids, 88 (2013)

[7] A. P. Markesteijn, V. A. Semiletov, S. A. Karabasov, CABARET GPU Solver for Fast-Turn-Around Flow and Noise Calculations, AIAA-2015-2223, 2015

[8] A. P. Markesteijn, V. A. Semiletov, S. A. Karabasov, GPU CABARET solutions for the SILOET jet noise experiment: Flow and noise modelling, AIAA-2016-2967, 2016

[9] A. P. Markesteijn, S. A. Karabasov, GPU CABARET Solutions for the NASA SHJAR Jet Noise Experiment: Flow and Noise Modeling, AIAA-2017-3852, 2017

[10] A. P. Markesteijn, S. A. Karabasov, “CABARET solutions on Graphics Processing Units for NASA jets: grid sensitivity and unsteady inflow condition effect”, CR Mecanique, Proc. French Academy of Sciences, 2018

[11] A. P. Markesteijn, S. A. Karabasov, “Simulations of co-axial jet flows on Graphics Processing Units: the flow and noise analysis”, Royal Soc. Philosophical Transactions A, 377 (2019), 2159 | MR | Zbl

[12] A. P. Markesteijn, H. K. Jawahar, S. A. Karabasov, M. Azarpeyvand, GPU CABARET Solu-tions for 30P30N Three-element High-lift Airfoil with Slat Modifications, AIAA-2021-2115, 2021

[13] H. A. Abid, A. P. Markesteijn, S. A. Karabasov, Trailing Edge Noise Modelling of Flow over NACA Airfoils Informed by LES, AIAA-2021-2233, 2021

[14] F. Cariglino, N. Ceresola, R. Arina, “External Aerodynamics Simulations in a Rotating Frame of Reference”, Inter. J. of Aerospace Eng., 2014, 654037 | DOI

[15] I. E. Sutherland, G. W. Hodgman, “Reentrant Polygon Clipping”, Communications of the ACM, 17 (1974), 32–42 | DOI | Zbl

[16] A. Chintagunta, S. E. Naghibi, A. P. Markesteijn, S. A. Karabasov, A fourth-order CABARET scheme for Computational Aeroacoustics, preprint, 2018 | DOI

[17] A. Chintagunta, S. E. Naghibi, A. P. Markesteijn, S. A. Karabasov, Dispersion Improved CABARET for Computational Aeroacoustics, AIAA-2017-4185, 2017