Numerical simulation of turbulent spots evolution in supersonic boundary layer over a plate
Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 63-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Direct numerical simulations of the turbulent spots evolution in the boundary layer on a flat plate at zero angle of attack at the freestream Mach number $\mathrm{M}_\infty=6$ has been carried out. Considered was the propagation of artificially excited localized three-dimensional vortical disturbances with different initial amplitudes, which, when propagating downstream, develop into turbulent spots. A direct numerical simulation was performed by solving the Navier-Stokes equations for three-dimensional compressible gas flows using the in-house solver that implements an implicit shock capturing numerical scheme. It is shown, that the universal quasi-monotone numerical scheme makes it possible to correctly estimate the main characteristics of turbulent spots — the transverse spreading angle and leading and trailing fronts velocities. The agreement between the obtained spots parameters and the results of other authors is demonstrated.
Keywords: boundary layer, compressible flows, direct numerical simulation
Mots-clés : laminar-turbulent transition, turbulent spots.
@article{MM_2022_34_7_a4,
     author = {I. V. Egorov and A. V. Novikov and P. V. Chuvakhov},
     title = {Numerical simulation of turbulent spots evolution in supersonic boundary layer over a plate},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {34},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_7_a4/}
}
TY  - JOUR
AU  - I. V. Egorov
AU  - A. V. Novikov
AU  - P. V. Chuvakhov
TI  - Numerical simulation of turbulent spots evolution in supersonic boundary layer over a plate
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 63
EP  - 72
VL  - 34
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_7_a4/
LA  - ru
ID  - MM_2022_34_7_a4
ER  - 
%0 Journal Article
%A I. V. Egorov
%A A. V. Novikov
%A P. V. Chuvakhov
%T Numerical simulation of turbulent spots evolution in supersonic boundary layer over a plate
%J Matematičeskoe modelirovanie
%D 2022
%P 63-72
%V 34
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_7_a4/
%G ru
%F MM_2022_34_7_a4
I. V. Egorov; A. V. Novikov; P. V. Chuvakhov. Numerical simulation of turbulent spots evolution in supersonic boundary layer over a plate. Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 63-72. http://geodesic.mathdoc.fr/item/MM_2022_34_7_a4/

[1] R. Narasimha, “The laminar-turbulent transition zone in the boundray layer”, Progress in Aerospace Sciences, 22 (1985), 22–80 | DOI

[2] J. P. Clark, T. V. Jones, J. E. La Graff, “On the propagation of naturally occurring spots”, Journal of Engineering Mathematics, 28 (1994), 1–19 | DOI

[3] D. J. Mee, C. P. Goyne, “Turbulent spots in boundary layers in a free-piston shock-tunnel flow”, Shock Waves, 6:6 (1996), 337–343 | DOI

[4] D. J. Mee, “Boundary-Layer Transition Measurements in Hypervelocity Flows in a Shock Tunnel”, AIAA Journal, 40:8 (2002), 1542–1548 | DOI

[5] L. Krishnan, N. D. Sandham, “Effect of Mach number on the structure of turbulent spots”, Journal of Fluid Mechanics, 566 (2006), 225 | DOI | Zbl

[6] A. Jocksch, L. Kleiser, “Growth of turbulent spots in high-speed boundary layers”, International Journal of Heat and Fluid Flow, 2008, no. 29, 1543–1557 | DOI

[7] J. Sivasubramanian, H. F. Fasel, “Direct numerical simulation of a turbulent spot in a cone boundary layer at Mach 6”, 40th AIAA Fluid Dynamics Conference and Exhibit, 2010, AIAA paper 2010-4599 | DOI

[8] J. A. Redford, N. D. Sandham, G. T. Roberts, “Numerical simulations of turbulent spots in supersonic boundary layers: Effects of Mach number and wall temperature”, Progress in Aerospace Sciences, 52 (2012), 67–79 | DOI

[9] J. S. Jewell, I. A. Leyva, J. E. Shepherd, “Turbulent spots in hypervelocity flow”, Experiments in Fluids, 58:4 (2017), 32 | DOI

[10] P. V. Chuvakhov, A. V. Fedorov, A. O. Obraz, “Numerical simulation of turbulent spots generated by unstable wave packets in a hypersonic boundary layer”, Computers and Fluids, 162 (2018), 26–38 | DOI | MR | Zbl

[11] J. Van den Eynde, J. Steelant, “Compressibility and temperature effects on turbulent spot growth”, HiSST: Inter. Conf. on High-Speed Vehicle Sci. Technology (26–29 November 2018, Moscow, Russia)

[12] I. V. Egorov, A. V. Novikov, A. V. Fedorov, “Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer”, Computational Math. and Math. Physics, 57:8 (2017), 1335–1359 | DOI | DOI | MR | Zbl

[13] K. Breuer, M. Landahl, “The evolution of a localized disturbance in a laminar boundary layer. Part 2. Strong disturbances”, Journal of Fluid Mechanics, 1990, no. 220, 595–621 | DOI

[14] E. R. Van Driest, “The problem of aerodynamic heating”, Aeronaut. Engin. Rev., 15:8 (1956), 26–41