Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_7_a2, author = {A. V. Gorobets and A. P. Duben and T. K. Kozubskaya and P. V. Rodionov}, title = {Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {24--48}, publisher = {mathdoc}, volume = {34}, number = {7}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/} }
TY - JOUR AU - A. V. Gorobets AU - A. P. Duben AU - T. K. Kozubskaya AU - P. V. Rodionov TI - Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration JO - Matematičeskoe modelirovanie PY - 2022 SP - 24 EP - 48 VL - 34 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/ LA - ru ID - MM_2022_34_7_a2 ER -
%0 Journal Article %A A. V. Gorobets %A A. P. Duben %A T. K. Kozubskaya %A P. V. Rodionov %T Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration %J Matematičeskoe modelirovanie %D 2022 %P 24-48 %V 34 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/ %G ru %F MM_2022_34_7_a2
A. V. Gorobets; A. P. Duben; T. K. Kozubskaya; P. V. Rodionov. Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration. Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 24-48. http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/
[1] ICAO. Environmental Protection. Reduction of Noise at Source, (data obrascheniya: 17.02.2022) https://www.icao.int/environmental-protection/pages/reduction-of-noise-at-source.aspx
[2] W. Dobrzynski, R. Ewert, M. Pott-Pollenske, M. Herr, J. Delfs, “Research at DLR towards airframe noise prediction and reduction”, Aerosp. Sci. Technol., 12:1 (2008), 80–90 | DOI
[3] R. Merino-Martínez et al., “A review of acoustic imaging methods using phased microphone arrays”, CEAS Aeronaut. J., 10:1 (2019), 197–230 | DOI
[4] AIAA CFD Workshops (data obrascheniya: 17.02.2022) https://cfd2030.com/workshops.html
[5] M. Choudhari, D. Lockard, “Simulations Measurements of Airframe Noise: A BANC Workshops Perspective”, Specialists Meeting on «Progress and Challenges in Validation Testing for Computational Fluid Dynamics» (AVT-246), NASA, 2016
[6] M. Choudhari, D. Lockard, Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop, AIAA 2015-2844, 2015 | DOI
[7] J. A. Housman, G. D. Stich, C. C. Kiris, Predictions of Slat Noise from the 30P30N at High Angles of Attack using Zonal Hybrid RANS-LES, AIAA Paper 2019-2438, 2019 | DOI | Zbl
[8] M. Herr et al, Broadband trailing-edge noise predictions overview of BANC-III results, AIAA Paper 2015-2847, 2015 | DOI
[9] J. Delfs, L. Bertsch, C. Zellmann, L. Rossian, E. K. Far, T. Ring, S. C. Langer, “Aircraft Noise Assessment From Single Components to Large Scenarios”, Energies, 11:2 (2018), 429 | DOI
[10] S. Heinz, “A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications”, Prog. Aerosp. Sci., 114 (2020), 100597 | DOI
[11] “DESider — A European Effort on Hybrid RANS-LES Modelling”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design Revell, 103 (2009) | DOI
[12] P. R. Spalart, “Detached-Eddy Simulation”, Annu. Rev. Fluid Mech., 41 (2009), 181–202 | DOI | Zbl
[13] C. Mockett, M. Fuchs, F. Thiele, “Progress in DES for wall-modelled LES of complex internal flows”, Comp. Fluids, 65 (2012), 44–55 | DOI | MR | Zbl
[14] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat Fluid Flow, 29:6 (2008), 1638–1649 | DOI
[15] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows”, Flow, Turbul. Combust., 95:4 (2015), 709–737 | DOI
[16] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaia, “Parallelnyi programmnyi kompleks NOISEtte dlia krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125
[17] A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations”, Lobachevskii J. Math., 39:4 (2018), 524–532 | DOI | MR | Zbl
[18] A. Gorobets, P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers”, Comput. Phys. Commun., 271 (2022), 108231 | DOI | MR
[19] K. Paschal, L. Jenkins, C. Yao, Unsteady slat-wake characteristics of a high-lift configuration, AIAA Paper-2000-0139, 2000 | DOI
[20] L. N. Jenkins, M. R. Khorrami, M. Choudhari, Characterization of unsteady flow structures near leading-edge slat: Part I. PIV measurements, AIAA Paper No 2004-2801, 2004 | DOI
[21] K. A. Pascioni, L. N. Cattafesta, M. M. Choudhari, An experimental investigation of the 30P30N multi-element high-lift airfoil, AIAA Paper No 2014-3062, 2014 | DOI
[22] K. A. Pascioni, L. N. Cattafesta, Aeroacoustic measurements of leading-edge slat noise, AIAA Pap. No 2016-2960, 2016 | DOI
[23] K. A. Pascioni, L. N. Cattafesta, “An aeroacoustic study of a leading-edge slat: Beamforming and far field estimation using near field quantities”, J. Sound Vib., 429 (2018), 224–244 | DOI
[24] K. A. Pascioni, L. N. Cattafesta, “Unsteady characteristics of a slat-cove flow field”, Phys. Rev. Fluids, 3:3 (2018), 034607 | DOI
[25] M. Murayama, K. Nakakita, K. Yamamoto, H. Ura, Y. Ito, M. M. Choudhari, Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA hard-wall low-speed wind tunnel, AIAA Paper, No 2014-2080, 2014 | DOI | Zbl
[26] M. Murayama et al., Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA kevlar-wall low-speed wind tunnel, AIAA Paper, No 2018-3460, 2018 | DOI
[27] D. J. Bodony, “Analysis of sponge zones for computational fluid mechanics”, J. Comput. Phys., 212:2 (2006), 681–702 | DOI | MR | Zbl
[28] A. Mani, “Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment”, J. Comput. Phys., 231:2 (2012), 704–716 | DOI | Zbl
[29] A. Colombo, A. Crivellini, “Assessment of a sponge layer non-reflecting boundary treatment for high-order CAA/CFD computations”, Comput. Fluids, 140 (2016), 478–499 | DOI | MR | Zbl
[30] G. Ashcroft, X. Zhang, A computational investigation of the noise radiated by flow-induced cavity oscillations, AIAA Paper-2001-0512, 2001 | DOI
[31] P. R. Spalart, S. R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper-92-0439, 1992 | DOI | Zbl
[32] C. Mockett, M. Fuchs, A. Garbaruk, M. Shur, P. Spalart, M. Strelets, F. Thiele, A. Travin, “Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES”, Progress in Hybrid RANS-LES Modelling, 130 (2015), 187–201 | DOI
[33] F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, J. Lee, “Using singular values to build a subgrid-scale model for large eddy simulations”, Phys. Fluids, 23 (2011), 085106 | DOI
[34] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR
[35] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comput. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl
[36] A. P. Duben, T. K. Kozubskaya, P. V. Rodionov, V. O. Tsvetkova, “EBR Schemes with Curvilinear Reconstructions of Variables in the Near-Wall Region”, Comput. Math. Math. Phys., 61:1 (2021), 1–16 | DOI | DOI | MR | Zbl
[37] P.A. Bakhvalov, “Method of local element splittings for diffusion terms discretization in edge-bases schemes”, Keldysh Inst. Prepr., 2020, 079, 43 pp. | DOI
[38] Y. Zhang, H. Chen, K. Wang, M. Wang, “Aeroacoustic Prediction of a Multi-Element Airfoil Using Wall-Modeled Large-Eddy Simulation”, AIAA J., 55:12 (2017), 4219–4233 | DOI
[39] A. G. Piersol, J. S. Bendat, Random Data: Analysis and Measurement Procedures, 4th Edition, 2011, 640 pp. | MR
[40] G. Heinzel, A. R-diger, R. Schilling, Spectrum and spectral density estimation by the Dis-crete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows, 2002 http://hdl.handle.net/11858/00-001M-0000-0013-557A-5 | Zbl
[41] J. E. Ffowcs Williams, D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion”, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci., 264:1151 (1969), 321–342 | DOI | Zbl
[42] P. A. Bakhvalov, T. K. Kozubskaya, E. D. Kornilina, A. V. Morozov, M. V. Yacobovskii, “Technology of Predicting Acoustic Turbulence in the Far Field Flow”, Mathematical Models and Computer Simulations, 4:3 (2012), 363–374 | DOI | MR | MR | Zbl
[43] M. L. Shur, P. R. Spalart, M. K. Strelets, “Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests”, Int. J. Aeroacoustics, 4:3 (2005), 213–245 | DOI
[44] M. L. Shur, P. R. Spalart, M. K. Strelets, “Noise Prediction for Increasingly Complex Jets. Part II: Applications”, Int. J. Aeroacoustics, 4:3 (2005), 247–266 | DOI
[45] P. R. Spalart, M. L. Shur, “Variants of the Ffowcs Williams Hawkings Equation and Their Coupling with Simulations of Hot Jets”, Int. J. Aeroacoustics, 8:5 (2009), 477–491 | DOI