Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration
Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 24-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We assess the applicability of the IDDES method for modeling acoustics generated by multi-element aircraft wing with deflected high-lift devices. The testing is carried out using the flow around unsweep wing segment based on the 30P30N airfoil. The near-field acoustics and aerodynamics obtained by the computations are compared with the experimental data. Far-field acoustics is modeled by the FWH method, the resulting spectra and radiation pattern are presented in the paper. We also test the application of sponge layers on the segment borders as an alternative to the periodic boundary conditions; the corresponding effects on the numerical solution are demonstrated.
Keywords: EBR scheme, validation. sponge layer.
Mots-clés : DES, 30P30N
@article{MM_2022_34_7_a2,
     author = {A. V. Gorobets and A. P. Duben and T. K. Kozubskaya and P. V. Rodionov},
     title = {Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--48},
     publisher = {mathdoc},
     volume = {34},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/}
}
TY  - JOUR
AU  - A. V. Gorobets
AU  - A. P. Duben
AU  - T. K. Kozubskaya
AU  - P. V. Rodionov
TI  - Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 24
EP  - 48
VL  - 34
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/
LA  - ru
ID  - MM_2022_34_7_a2
ER  - 
%0 Journal Article
%A A. V. Gorobets
%A A. P. Duben
%A T. K. Kozubskaya
%A P. V. Rodionov
%T Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration
%J Matematičeskoe modelirovanie
%D 2022
%P 24-48
%V 34
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/
%G ru
%F MM_2022_34_7_a2
A. V. Gorobets; A. P. Duben; T. K. Kozubskaya; P. V. Rodionov. Approaches to the numerical simulation of the acoustic field generated by multi-element aircraft wing in high-lift configuration. Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 24-48. http://geodesic.mathdoc.fr/item/MM_2022_34_7_a2/

[1] ICAO. Environmental Protection. Reduction of Noise at Source, (data obrascheniya: 17.02.2022) https://www.icao.int/environmental-protection/pages/reduction-of-noise-at-source.aspx

[2] W. Dobrzynski, R. Ewert, M. Pott-Pollenske, M. Herr, J. Delfs, “Research at DLR towards airframe noise prediction and reduction”, Aerosp. Sci. Technol., 12:1 (2008), 80–90 | DOI

[3] R. Merino-Martínez et al., “A review of acoustic imaging methods using phased microphone arrays”, CEAS Aeronaut. J., 10:1 (2019), 197–230 | DOI

[4] AIAA CFD Workshops (data obrascheniya: 17.02.2022) https://cfd2030.com/workshops.html

[5] M. Choudhari, D. Lockard, “Simulations Measurements of Airframe Noise: A BANC Workshops Perspective”, Specialists Meeting on «Progress and Challenges in Validation Testing for Computational Fluid Dynamics» (AVT-246), NASA, 2016

[6] M. Choudhari, D. Lockard, Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop, AIAA 2015-2844, 2015 | DOI

[7] J. A. Housman, G. D. Stich, C. C. Kiris, Predictions of Slat Noise from the 30P30N at High Angles of Attack using Zonal Hybrid RANS-LES, AIAA Paper 2019-2438, 2019 | DOI | Zbl

[8] M. Herr et al, Broadband trailing-edge noise predictions overview of BANC-III results, AIAA Paper 2015-2847, 2015 | DOI

[9] J. Delfs, L. Bertsch, C. Zellmann, L. Rossian, E. K. Far, T. Ring, S. C. Langer, “Aircraft Noise Assessment From Single Components to Large Scenarios”, Energies, 11:2 (2018), 429 | DOI

[10] S. Heinz, “A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications”, Prog. Aerosp. Sci., 114 (2020), 100597 | DOI

[11] “DESider — A European Effort on Hybrid RANS-LES Modelling”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design Revell, 103 (2009) | DOI

[12] P. R. Spalart, “Detached-Eddy Simulation”, Annu. Rev. Fluid Mech., 41 (2009), 181–202 | DOI | Zbl

[13] C. Mockett, M. Fuchs, F. Thiele, “Progress in DES for wall-modelled LES of complex internal flows”, Comp. Fluids, 65 (2012), 44–55 | DOI | MR | Zbl

[14] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[15] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows”, Flow, Turbul. Combust., 95:4 (2015), 709–737 | DOI

[16] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaia, “Parallelnyi programmnyi kompleks NOISEtte dlia krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125

[17] A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations”, Lobachevskii J. Math., 39:4 (2018), 524–532 | DOI | MR | Zbl

[18] A. Gorobets, P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers”, Comput. Phys. Commun., 271 (2022), 108231 | DOI | MR

[19] K. Paschal, L. Jenkins, C. Yao, Unsteady slat-wake characteristics of a high-lift configuration, AIAA Paper-2000-0139, 2000 | DOI

[20] L. N. Jenkins, M. R. Khorrami, M. Choudhari, Characterization of unsteady flow structures near leading-edge slat: Part I. PIV measurements, AIAA Paper No 2004-2801, 2004 | DOI

[21] K. A. Pascioni, L. N. Cattafesta, M. M. Choudhari, An experimental investigation of the 30P30N multi-element high-lift airfoil, AIAA Paper No 2014-3062, 2014 | DOI

[22] K. A. Pascioni, L. N. Cattafesta, Aeroacoustic measurements of leading-edge slat noise, AIAA Pap. No 2016-2960, 2016 | DOI

[23] K. A. Pascioni, L. N. Cattafesta, “An aeroacoustic study of a leading-edge slat: Beamforming and far field estimation using near field quantities”, J. Sound Vib., 429 (2018), 224–244 | DOI

[24] K. A. Pascioni, L. N. Cattafesta, “Unsteady characteristics of a slat-cove flow field”, Phys. Rev. Fluids, 3:3 (2018), 034607 | DOI

[25] M. Murayama, K. Nakakita, K. Yamamoto, H. Ura, Y. Ito, M. M. Choudhari, Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA hard-wall low-speed wind tunnel, AIAA Paper, No 2014-2080, 2014 | DOI | Zbl

[26] M. Murayama et al., Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA kevlar-wall low-speed wind tunnel, AIAA Paper, No 2018-3460, 2018 | DOI

[27] D. J. Bodony, “Analysis of sponge zones for computational fluid mechanics”, J. Comput. Phys., 212:2 (2006), 681–702 | DOI | MR | Zbl

[28] A. Mani, “Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment”, J. Comput. Phys., 231:2 (2012), 704–716 | DOI | Zbl

[29] A. Colombo, A. Crivellini, “Assessment of a sponge layer non-reflecting boundary treatment for high-order CAA/CFD computations”, Comput. Fluids, 140 (2016), 478–499 | DOI | MR | Zbl

[30] G. Ashcroft, X. Zhang, A computational investigation of the noise radiated by flow-induced cavity oscillations, AIAA Paper-2001-0512, 2001 | DOI

[31] P. R. Spalart, S. R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper-92-0439, 1992 | DOI | Zbl

[32] C. Mockett, M. Fuchs, A. Garbaruk, M. Shur, P. Spalart, M. Strelets, F. Thiele, A. Travin, “Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES”, Progress in Hybrid RANS-LES Modelling, 130 (2015), 187–201 | DOI

[33] F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, J. Lee, “Using singular values to build a subgrid-scale model for large eddy simulations”, Phys. Fluids, 23 (2011), 085106 | DOI

[34] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR

[35] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comput. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl

[36] A. P. Duben, T. K. Kozubskaya, P. V. Rodionov, V. O. Tsvetkova, “EBR Schemes with Curvilinear Reconstructions of Variables in the Near-Wall Region”, Comput. Math. Math. Phys., 61:1 (2021), 1–16 | DOI | DOI | MR | Zbl

[37] P.A. Bakhvalov, “Method of local element splittings for diffusion terms discretization in edge-bases schemes”, Keldysh Inst. Prepr., 2020, 079, 43 pp. | DOI

[38] Y. Zhang, H. Chen, K. Wang, M. Wang, “Aeroacoustic Prediction of a Multi-Element Airfoil Using Wall-Modeled Large-Eddy Simulation”, AIAA J., 55:12 (2017), 4219–4233 | DOI

[39] A. G. Piersol, J. S. Bendat, Random Data: Analysis and Measurement Procedures, 4th Edition, 2011, 640 pp. | MR

[40] G. Heinzel, A. R-diger, R. Schilling, Spectrum and spectral density estimation by the Dis-crete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows, 2002 http://hdl.handle.net/11858/00-001M-0000-0013-557A-5 | Zbl

[41] J. E. Ffowcs Williams, D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion”, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci., 264:1151 (1969), 321–342 | DOI | Zbl

[42] P. A. Bakhvalov, T. K. Kozubskaya, E. D. Kornilina, A. V. Morozov, M. V. Yacobovskii, “Technology of Predicting Acoustic Turbulence in the Far Field Flow”, Mathematical Models and Computer Simulations, 4:3 (2012), 363–374 | DOI | MR | MR | Zbl

[43] M. L. Shur, P. R. Spalart, M. K. Strelets, “Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests”, Int. J. Aeroacoustics, 4:3 (2005), 213–245 | DOI

[44] M. L. Shur, P. R. Spalart, M. K. Strelets, “Noise Prediction for Increasingly Complex Jets. Part II: Applications”, Int. J. Aeroacoustics, 4:3 (2005), 247–266 | DOI

[45] P. R. Spalart, M. L. Shur, “Variants of the Ffowcs Williams Hawkings Equation and Their Coupling with Simulations of Hot Jets”, Int. J. Aeroacoustics, 8:5 (2009), 477–491 | DOI