Computational and experimental studies of a low-noise aircraft with a laminar wing and engines above the trailing edge of the wing
Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 5-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main direction of development of modern commercial aviation is not only to improve the safety and fuel efficiency of aircraft, but also to reduce the impact on the environment, especially in terms of permissible community noise. One idea is to move the power plant to the upper surface of the wing to shield engine noise by the wing. Such a solution can lead to aggravation of the unfavorable aerodynamic interference between airframe elements, forcing the cruising speed to be reduced to the Mach number $\mathrm{M}=0.7$$0.75$, instead of the most common $\mathrm{M}=0.78$$0.8$. Solving the problem of unfavorable interference for low-noise layouts requires an improvement in the established design methodology. This paper presents studies on the methodology of designing the aerodynamic layout of a low-noise aircraft, which has two features: the engines are located above the trailing edge of the wing, and the wing itself has a small sweep $\chi_{1/4}\sim15^\circ$ with natural laminar flow (NLF), while maintaining the cruising Mach number $\mathrm{M}=0.78$. An experimental confirmation of the feasibility of this concept has been obtained.
Keywords: low-noise aerodynamic layout, laminar wing, direct method, inverse method, lift-to-drag ratio.
@article{MM_2022_34_7_a1,
     author = {A. L. Bolsunovsky and N. N. Bragin and N. P. Buzoverya and E. S. Perchenkov and I. L. Chernyshev and S. I. Skomorokhov},
     title = {Computational and experimental studies of a low-noise aircraft with a laminar wing and engines above the trailing edge of the wing},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {34},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_7_a1/}
}
TY  - JOUR
AU  - A. L. Bolsunovsky
AU  - N. N. Bragin
AU  - N. P. Buzoverya
AU  - E. S. Perchenkov
AU  - I. L. Chernyshev
AU  - S. I. Skomorokhov
TI  - Computational and experimental studies of a low-noise aircraft with a laminar wing and engines above the trailing edge of the wing
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 5
EP  - 23
VL  - 34
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_7_a1/
LA  - ru
ID  - MM_2022_34_7_a1
ER  - 
%0 Journal Article
%A A. L. Bolsunovsky
%A N. N. Bragin
%A N. P. Buzoverya
%A E. S. Perchenkov
%A I. L. Chernyshev
%A S. I. Skomorokhov
%T Computational and experimental studies of a low-noise aircraft with a laminar wing and engines above the trailing edge of the wing
%J Matematičeskoe modelirovanie
%D 2022
%P 5-23
%V 34
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_7_a1/
%G ru
%F MM_2022_34_7_a1
A. L. Bolsunovsky; N. N. Bragin; N. P. Buzoverya; E. S. Perchenkov; I. L. Chernyshev; S. I. Skomorokhov. Computational and experimental studies of a low-noise aircraft with a laminar wing and engines above the trailing edge of the wing. Matematičeskoe modelirovanie, Tome 34 (2022) no. 7, pp. 5-23. http://geodesic.mathdoc.fr/item/MM_2022_34_7_a1/

[1] O. Brodersen, K. Taupin, E. Maury, R. Spieweg, J. Lieser, M. Laban, J. L. Godard, P. L. Vitagliano, P. Bigot, Aerodynamics Investigations in the European Project ROSAS (Research on Silent Aircraft Concepts), AIAA Conference Paper No 4891 (Toronto, Ontario, Canada, 2005)

[2] L. Savoni, R. Rudnik, Pylon design for a short range transport aircraft with over-the-wing mounted UHBR engines (Kissimmee, Florida, USA, 2018)

[3] Tezisy dokladov chetvertoi otkrytoi Vserossiiskoi konferentsii po aeroakustike, izd. TsAGI, Zhukovskii, 2015

[4] S. L. Denisov, N. N. Ostrikov, “Osobennosti snizheniia shuma aviatsionnykh ustanovok s pomoshchiu effekta ekranirovaniia”, Trudy Vserossiiskoi akusticheskoi konferentsii, Politekh-press, Sankt-Peterburg, 2020, 585–588

[5] St. Powell, A. Sobester, Ph. Joseph, “Fan broadband noise shielding for over-wing engines”, Journal of Sound and Vibration, 331 (2012), 5054–5068 | DOI

[6] M. Iu. Zaitsev, S. A. Karabasov, R. K. Karavasov, V. F. Kopev, G. A. Faranosov, O. P. Bychkov, V. A. Semiletov, “Issledovanie effekta usileniia shuma strui vblizi kryla”, Materialy KhKhV Nauchno-tekhnicheskoi konferentsii po aerodinamike (p. Volodarskogo, Mosk. obl., 2011)

[7] A. L. Bolsunovskii, N. P. Buzoveria, O. V. Karas, V. E. Kovalev, “Razvitie metodov aerodina-micheskogo proektirovaniia kreiserskoi komponovki dozvukovykh samoletov”, Trudy TsAGI, 2655 (2002), 133–145

[8] J. A. Benek, P. G. Buning, J. L. Steger, A 3-D Chimera Grid Embedding Technique, AIAA Paper, No 85-1523, 1985

[9] J. A. Benek, T. L. Donegan, N. E. Suhs, Extended Chimera Grid Embedding Scheme with application to viscous flow, AIAA Paper, No 87-1126, 1987 | Zbl

[10] A. M. Elizarov, N. B. Ilinskii, A. V. Potashev, Obratnye kraevye zadachi aero-gidrodinamiki, Fizmatlit, M., 1994 | MR

[11] G. Volpe, Inverse design of airfoil contours: constraints, numerical method and applications, AGARD Advisory Report No CP-463, 1990, 37–56

[12] P. S. Granville, The calculation of viscous drag of bodies of revolution, The David Taylor Mod. Basin Report No 849, Nav. Dept., 1953

[13] V. E. Mosharov, V. N. Radchenko, E. S. Shapoval, “Visualization of boundary layer transition by shear sensitive liquid crystals at subsonic flow velocities”, 15th International Symposium on Flow Visualization (Minsk, Belarus, 2012)

[14] V. E. Mosharov, V. N. Radchenko, E. S. Shapoval, “Issledovaniia perekhoda pogranichnogo sloia pri transzvukovykh skorostiakh s pomoshchiu zhidkikh kristallov chuvstvitelnykh k kasatelnym napriazheniiam”, XXIV nauchno-tekhnicheskaia konferentsiia po aerodinamike (p. Volodarskogo, Moskovskaia obl., 2013), 190

[15] G. G. Gadzhimagomedov, S. A. Glazkov, A. R. Gorbushin, D. S. Sboev, A. V. Semenov, I. V. Seniuev, V. G. Sudakov, “Issledovaniia laminarno-turbulentnogo perekhoda na krupnomasshtabnoi modeli transzvukovogo profilia kryla”, Materialy XXX nauchno-tekhnicheskoi konferentsii po aerodinamike, Tsentralnyi Aerogidrodinamicheskii Institut imeni prof. N.E. Zhukovskogo (TsAGI), 2019, 84

[16] D. E. Gref, “Aerodynamic design for a new regional aircraft”, Proc. of ICAS-90, 1990, 2.7.1

[17] D. W. Levy, K. R. Laflin, E. N. Tinoco, J. C. Vassberg, M. Mani, B. Rider, C. L. Rumsey, R. A. Wahls, J. H. Morrison, O. P. Brodersen, S. Crippa, D. J. Mavriplis, M. Murayama, Summary of Data from the 5-th AIAA CFD Drag Prediction Workshop, AIAA Conf. Paper No 0046 (Grapevine, Texas, USA, 2013), 2013