Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_6_a5, author = {V. E. Borisov and T. V. Konstantinovskaya and A. E. Lutsky}, title = {Investigation of vortex structures in supersonic flow around tandem wings}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {92--110}, publisher = {mathdoc}, volume = {34}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/} }
TY - JOUR AU - V. E. Borisov AU - T. V. Konstantinovskaya AU - A. E. Lutsky TI - Investigation of vortex structures in supersonic flow around tandem wings JO - Matematičeskoe modelirovanie PY - 2022 SP - 92 EP - 110 VL - 34 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/ LA - ru ID - MM_2022_34_6_a5 ER -
%0 Journal Article %A V. E. Borisov %A T. V. Konstantinovskaya %A A. E. Lutsky %T Investigation of vortex structures in supersonic flow around tandem wings %J Matematičeskoe modelirovanie %D 2022 %P 92-110 %V 34 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/ %G ru %F MM_2022_34_6_a5
V. E. Borisov; T. V. Konstantinovskaya; A. E. Lutsky. Investigation of vortex structures in supersonic flow around tandem wings. Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 92-110. http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/
[1] BFU Interim Report BFU17-0024-2X, German Federal Bureau of Aircraft Accident Investigation, 2017
[2] P. R. Spalart, “Airplane Trailing Vortices”, Annual Review Fluid Mechanics, 30 (1998), 107–124 | DOI | MR
[3] T. J. Craft, A. V. Gerasimov, B. E. Launder, C. M. E. Robinson, “A Computational Study of the Near-Field Generation and Decay of Wingtip Vortices”, International Journal of Heat and Fluid Flow, 27 (2006), 684–695 | DOI
[4] J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, P. Bradshaw, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, 33:9 (1995), 1561–1568 | DOI
[5] M. Shur, M. Strelets, A. Travin, P. Spalart, Two Numerical Studies of Trailing Vortices, AIAA Paper 98-0595, 1998 | MR
[6] C. Breitsamter, “Wake Vortex Characteristics of Transport Aircraft”, Progress in Aerospace Sciences, 47 (2011), 89–134 | DOI
[7] A. S. Ginevskij, A. I. Zhelannikov, Vikhrevye sledy samoletov, Fizmatlit, M., 2008, 172 pp.
[8] V. V. Vyshinskij, G. G. Sudakov, “Vikhrevoj sled samoleta i voprosy bezopasnosti poletov”, Trudy MFTI, 1(3) (2009), 73–93
[9] D. P. Rizzetta, “Numerical investigation of supersonic wing-tip vortices”, AIAA J., 34:6 (1996), 1203–1208 | DOI
[10] A. S. Shmakov, A. M. Shevchenko, A. A. Yatskikh, Yu. G. Yermolaev, “Mass flow and its pulsation measurements in supersonic wing wake”, AIP Conference Proc., 1770 (2016), 030019 | DOI
[11] V. E. Borisov, A. A. Davydov, T. V. Konstantinovskaya, A. E. Lutsky, A. M. Shevchenko, A. S. Shmakov, “Numerical and experimental investigation of a supersonic vortex wake at a wide distance from the wing”, AIP Conference Proc., 2027 (2018), 030120 | DOI
[12] T. Hiejima, “Streamwise vortex breakdown in supersonic flows”, Physics of Fluids, 29 (2017), 054102 | DOI
[13] T. Gallay, Y. Maekawa, Three-dimensional stability of Burgers vortices, 2010, arXiv: 1002.2489v1 [math.AP] | MR
[14] V. N. Zudov, E. A. Pimonov, “Interaction of a Streamwise Vortex with an Oblique Shock Wave”, Journal of Applied Mechanics and Technical Physics, 44 (2003), 461–470 | DOI | MR | Zbl
[15] V. N. Zudov, “Interaction of a streamwise vortex with the normal shock”, Journal of Applied Mechanics and Technical Physics, 52 (2011), 734–743 | DOI | Zbl
[16] M. K. Smart, I. M. Kalkhoran, The Effect of shock strength on oblique shock wave-vortex interaction, AIAA Paper 95-0098, 1995
[17] A. A. Zheltovodov, E. A. Pimonov, D. K. Doyle, “Numerical modeling of vortex/shock wave interaction and its transformation by localized energy deposition”, Shock Waves, 17 (2007), 273–290 | DOI | Zbl
[18] V. Ya. Borovoy, T. V. Kubyshina, A. S. Skuratov, L. V. Yakovleva, “Vortex in a Supersonic Flow and its Influence on Blunt Body Flow and Heat Transfer”, Fluid Dynamics, 35 (2000), 682–691 | DOI
[19] H. Pourhashem, I. M. Kalkhoran, S. Kumar, “Interaction of Vortex with Bow Shock Wave: Computational Model, Experimental Validation, Enhanced Mixing”, AIAA J., 56:8 (2018), 3071–3085 | DOI
[20] C. Chen, Z. Wang, I. Gursul, “Experiments on tip vortices interacting with downstream wings”, Experiments in Fluids, 59:5 (2018), 82, 24 pp. | DOI
[21] C. J. Barnes, M. R. Visbal, P. G. Huang, “On the effects of vertical offset and core structure in streamwise-oriented vortex-wing interactions”, J. of Fluid Mechanics, 799 (2016), 128–158 | DOI | MR | Zbl
[22] F. Y. Wang, M. Milanovict, K. B. M. Q. Zaman, L. A. Povinelli, “A Quantitative Comparison of Delta Wing Vortices in the Near-Wake for Incompressible and Supersonic Free Streams”, Journal of Fluids Engineering, 127 (2005), 1070–1084
[23] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (Big Island, Hawaii, 9–13 July 2012)
[24] L. V. Bykov, A. M. Molchanov, M. A. Shherbakov, D. S. Yanyshev, Vychislitel'naya mexanika sploshnyx sred v zadachax aviacionnoj i kosmicheskoj tekhniki, LENAND, M., 2015, 688 pp.
[25] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutsky, I. S. Men'shov, “Parallel Implementation of an Implicit Scheme Based on the LU-SGS Method for 3D Turbulent Flows”, Mathematical Models and Computer Simulations, 7:3 (2015), 222–232 | DOI | MR | Zbl
[26] C. Liu, Y. Gao, X. Dong, Y. Wang, J. Liu, Y. Zhang, X. Cai, N. Gui, “Third generation of vortex identification methods: Omega and Liutex/Rortex based systems”, J. Hydrodyn., 31:2 (2019), 205–223 | DOI
[27] P. Shrestha, C. Nottage, Y. Yu, O. Alvarez, C. Liu, “Stretching and shearing contamination analysis for Liutex and other vortex identification methods”, Adv. Aerodyn., 3:8 (2021), 20 pp. | MR | Zbl
[28] J. Liu, C. Liu, “Modified normalized Rortex/vortex identification method”, Phys. Fluids, 31 (2019), 061704, 6 pp. | DOI
[29] X. Dong, Y. Gao, C. Liu, “New normalized Rortex/vortex identification method”, Phys. Fluids, 31 (2019), 011701, 6 pp. | DOI
[30] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, Programmnyi kompleks ARES dlya rascheta trekhmernykh turbulentnykh techenii vyazkogo szhimaemogo gaza na vysokoproizvoditel'nykh vychislitel'nykh sistemakh, Svidetel'stvo o registratsii programmy dlya EVM RU 2019667338, 23.12.2019
[31] Vychislitelnyi kompleks K-60, https://www.kiam.ru/MVS/resourses/k60.html