Investigation of vortex structures in supersonic flow around tandem wings
Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 92-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the mathematical model of unsteady Reynolds equations (URANS) numerical simulation of supersonic (M=3) flow around a tandem of finite span wings is carried out. The interaction of the tip vortex from the front wing, mounted at an angle of 10 degrees, with the surface of the second wing located downstream is investigated. It is shown that several secondary vortices with different directions of rotation are formed during this interaction. Modern methods of vortex structures identification and visualization based on the Liutex criterion are used.
Keywords: supersonic flow, wing tip vortex
Mots-clés : vortex surface interaction.
@article{MM_2022_34_6_a5,
     author = {V. E. Borisov and T. V. Konstantinovskaya and A. E. Lutsky},
     title = {Investigation of vortex structures in supersonic flow around tandem wings},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {92--110},
     publisher = {mathdoc},
     volume = {34},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/}
}
TY  - JOUR
AU  - V. E. Borisov
AU  - T. V. Konstantinovskaya
AU  - A. E. Lutsky
TI  - Investigation of vortex structures in supersonic flow around tandem wings
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 92
EP  - 110
VL  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/
LA  - ru
ID  - MM_2022_34_6_a5
ER  - 
%0 Journal Article
%A V. E. Borisov
%A T. V. Konstantinovskaya
%A A. E. Lutsky
%T Investigation of vortex structures in supersonic flow around tandem wings
%J Matematičeskoe modelirovanie
%D 2022
%P 92-110
%V 34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/
%G ru
%F MM_2022_34_6_a5
V. E. Borisov; T. V. Konstantinovskaya; A. E. Lutsky. Investigation of vortex structures in supersonic flow around tandem wings. Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 92-110. http://geodesic.mathdoc.fr/item/MM_2022_34_6_a5/

[1] BFU Interim Report BFU17-0024-2X, German Federal Bureau of Aircraft Accident Investigation, 2017

[2] P. R. Spalart, “Airplane Trailing Vortices”, Annual Review Fluid Mechanics, 30 (1998), 107–124 | DOI | MR

[3] T. J. Craft, A. V. Gerasimov, B. E. Launder, C. M. E. Robinson, “A Computational Study of the Near-Field Generation and Decay of Wingtip Vortices”, International Journal of Heat and Fluid Flow, 27 (2006), 684–695 | DOI

[4] J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, P. Bradshaw, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, 33:9 (1995), 1561–1568 | DOI

[5] M. Shur, M. Strelets, A. Travin, P. Spalart, Two Numerical Studies of Trailing Vortices, AIAA Paper 98-0595, 1998 | MR

[6] C. Breitsamter, “Wake Vortex Characteristics of Transport Aircraft”, Progress in Aerospace Sciences, 47 (2011), 89–134 | DOI

[7] A. S. Ginevskij, A. I. Zhelannikov, Vikhrevye sledy samoletov, Fizmatlit, M., 2008, 172 pp.

[8] V. V. Vyshinskij, G. G. Sudakov, “Vikhrevoj sled samoleta i voprosy bezopasnosti poletov”, Trudy MFTI, 1(3) (2009), 73–93

[9] D. P. Rizzetta, “Numerical investigation of supersonic wing-tip vortices”, AIAA J., 34:6 (1996), 1203–1208 | DOI

[10] A. S. Shmakov, A. M. Shevchenko, A. A. Yatskikh, Yu. G. Yermolaev, “Mass flow and its pulsation measurements in supersonic wing wake”, AIP Conference Proc., 1770 (2016), 030019 | DOI

[11] V. E. Borisov, A. A. Davydov, T. V. Konstantinovskaya, A. E. Lutsky, A. M. Shevchenko, A. S. Shmakov, “Numerical and experimental investigation of a supersonic vortex wake at a wide distance from the wing”, AIP Conference Proc., 2027 (2018), 030120 | DOI

[12] T. Hiejima, “Streamwise vortex breakdown in supersonic flows”, Physics of Fluids, 29 (2017), 054102 | DOI

[13] T. Gallay, Y. Maekawa, Three-dimensional stability of Burgers vortices, 2010, arXiv: 1002.2489v1 [math.AP] | MR

[14] V. N. Zudov, E. A. Pimonov, “Interaction of a Streamwise Vortex with an Oblique Shock Wave”, Journal of Applied Mechanics and Technical Physics, 44 (2003), 461–470 | DOI | MR | Zbl

[15] V. N. Zudov, “Interaction of a streamwise vortex with the normal shock”, Journal of Applied Mechanics and Technical Physics, 52 (2011), 734–743 | DOI | Zbl

[16] M. K. Smart, I. M. Kalkhoran, The Effect of shock strength on oblique shock wave-vortex interaction, AIAA Paper 95-0098, 1995

[17] A. A. Zheltovodov, E. A. Pimonov, D. K. Doyle, “Numerical modeling of vortex/shock wave interaction and its transformation by localized energy deposition”, Shock Waves, 17 (2007), 273–290 | DOI | Zbl

[18] V. Ya. Borovoy, T. V. Kubyshina, A. S. Skuratov, L. V. Yakovleva, “Vortex in a Supersonic Flow and its Influence on Blunt Body Flow and Heat Transfer”, Fluid Dynamics, 35 (2000), 682–691 | DOI

[19] H. Pourhashem, I. M. Kalkhoran, S. Kumar, “Interaction of Vortex with Bow Shock Wave: Computational Model, Experimental Validation, Enhanced Mixing”, AIAA J., 56:8 (2018), 3071–3085 | DOI

[20] C. Chen, Z. Wang, I. Gursul, “Experiments on tip vortices interacting with downstream wings”, Experiments in Fluids, 59:5 (2018), 82, 24 pp. | DOI

[21] C. J. Barnes, M. R. Visbal, P. G. Huang, “On the effects of vertical offset and core structure in streamwise-oriented vortex-wing interactions”, J. of Fluid Mechanics, 799 (2016), 128–158 | DOI | MR | Zbl

[22] F. Y. Wang, M. Milanovict, K. B. M. Q. Zaman, L. A. Povinelli, “A Quantitative Comparison of Delta Wing Vortices in the Near-Wake for Incompressible and Supersonic Free Streams”, Journal of Fluids Engineering, 127 (2005), 1070–1084

[23] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (Big Island, Hawaii, 9–13 July 2012)

[24] L. V. Bykov, A. M. Molchanov, M. A. Shherbakov, D. S. Yanyshev, Vychislitel'naya mexanika sploshnyx sred v zadachax aviacionnoj i kosmicheskoj tekhniki, LENAND, M., 2015, 688 pp.

[25] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutsky, I. S. Men'shov, “Parallel Implementation of an Implicit Scheme Based on the LU-SGS Method for 3D Turbulent Flows”, Mathematical Models and Computer Simulations, 7:3 (2015), 222–232 | DOI | MR | Zbl

[26] C. Liu, Y. Gao, X. Dong, Y. Wang, J. Liu, Y. Zhang, X. Cai, N. Gui, “Third generation of vortex identification methods: Omega and Liutex/Rortex based systems”, J. Hydrodyn., 31:2 (2019), 205–223 | DOI

[27] P. Shrestha, C. Nottage, Y. Yu, O. Alvarez, C. Liu, “Stretching and shearing contamination analysis for Liutex and other vortex identification methods”, Adv. Aerodyn., 3:8 (2021), 20 pp. | MR | Zbl

[28] J. Liu, C. Liu, “Modified normalized Rortex/vortex identification method”, Phys. Fluids, 31 (2019), 061704, 6 pp. | DOI

[29] X. Dong, Y. Gao, C. Liu, “New normalized Rortex/vortex identification method”, Phys. Fluids, 31 (2019), 011701, 6 pp. | DOI

[30] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, Programmnyi kompleks ARES dlya rascheta trekhmernykh turbulentnykh techenii vyazkogo szhimaemogo gaza na vysokoproizvoditel'nykh vychislitel'nykh sistemakh, Svidetel'stvo o registratsii programmy dlya EVM RU 2019667338, 23.12.2019

[31] Vychislitelnyi kompleks K-60, https://www.kiam.ru/MVS/resourses/k60.html