Comparison of relative motion models for spacecraft formation flying
Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 75-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a brief overview of the models of satellites relative motion, using relative coordinates to describe the position. We compare the accuracy of cartesian and curvilinear coordinates in linear motion models. It is shown that the use of curvilinear coordinates allows to increase the accuracy of linear model of motion, especially for large relative orbits. The result is presented in a scope of Hill-Clohessy-Wiltshire and Schweighart-Sedwick models of motion.
Keywords: formation flying, relative motion models.
@article{MM_2022_34_6_a4,
     author = {I. A. Suslova and Y. V. Mashtakov and S. A. Shestakov},
     title = {Comparison of relative motion models for spacecraft formation flying},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--91},
     publisher = {mathdoc},
     volume = {34},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_6_a4/}
}
TY  - JOUR
AU  - I. A. Suslova
AU  - Y. V. Mashtakov
AU  - S. A. Shestakov
TI  - Comparison of relative motion models for spacecraft formation flying
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 75
EP  - 91
VL  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_6_a4/
LA  - ru
ID  - MM_2022_34_6_a4
ER  - 
%0 Journal Article
%A I. A. Suslova
%A Y. V. Mashtakov
%A S. A. Shestakov
%T Comparison of relative motion models for spacecraft formation flying
%J Matematičeskoe modelirovanie
%D 2022
%P 75-91
%V 34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_6_a4/
%G ru
%F MM_2022_34_6_a4
I. A. Suslova; Y. V. Mashtakov; S. A. Shestakov. Comparison of relative motion models for spacecraft formation flying. Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 75-91. http://geodesic.mathdoc.fr/item/MM_2022_34_6_a4/

[1] K. T. Alfriend, S. R. Vadali, H. Schaub, “Formation Flying Satellites: Control by an Astrodynamicist”, Dynamics of Natural and Artificial Celestial Bodies, 81:1–2 (2001), 57–62 | DOI | MR | Zbl

[2] D.-W. Gim, K. T. Alfriend, “State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit”, J. Guid. Control. Dyn., 26:6 (2003), 956–971 | DOI

[3] D.-W. Gim, K. T. Alfriend, “Satellite Relative Motion Using Differential Equinoctial Elements”, Celest. Mech. Dyn. Astron., 92:4 (2005), 295–336 | DOI | MR | Zbl

[4] H. Schaub, K. T. Alfriend, “J2 invariant relative orbits for spacecraft formations”, Celest. Mech. Dyn. Astron., 79:2 (2001), 77–95 | DOI | MR | Zbl

[5] K. T. Alfriend, H. Schaub, D. Gim, “Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies”, Guid. Control, 2000, 139–158

[6] D. Morgan et al, “Swarm-Keeping Strategies for Spacecraft Under J2 and Atmospheric Drag Perturbations”, J. Guid. Control. Dyn., 35:5 (2012), 1492–1506 | DOI

[7] J. Sullivan, S. Grimberg, S. D'Amico, “Comprehensive survey and assessment of spacecraft relative motion dynamics models”, J. Guid. Control. Dyn., 40:8 (2017), 1837–1859 | DOI

[8] Y. Xu et al, “Control for Satellites Formation Flying”, J. Aerosp. Eng., 20:1 (2007), 10–21 | DOI | Zbl

[9] W. H. Clohessy, R. S. Wiltshire, “Terminal Guidance System for Satellite Rendezvous”, J. Astronaut. Sci., 27:9 (1960), 653–678

[10] D. Ivanov, M. Ovchinnikov, S. Shestakov, “Satellite formation flying control by mass exchange”, Acta Astronaut., 102 (2014), 392–401 | DOI

[11] K. Alfriend et al, Spacecraft Formation Flying: Dynamics, Control and Navigation, 1 Edition, Butterworth-Heinemann, 2010, 402 pp.

[12] G. W. Hill, “Researches in the Lunar Theory”, Am. J. Math., 1:3 (1878), 245 | DOI | MR | Zbl

[13] H. Baoyin, L. Junfeng, G. Yunfeng, “Dynamical behaviors and relative trajectories of the spacecraft formation flying”, Aerosp. Sci. Technol., 6:4 (2002), 295–301 | DOI | Zbl

[14] K. D. Kumar, H. C. Bang, M. J. Tahk, “Satellite formation flying using along-track thrust”, Acta Astronaut., 61:7–8 (2007), 553–564 | DOI

[15] D. Redding, N. Adams, E. Kubiak, “Linear-quadratic stationkeeping for the STS Orbiter”, Astrodynamics Conference, 12:2 (1986), 248–255

[16] V. Kapila et al, “Spacecraft formation flying: dynamics and control”, Proceedings of the 1999 American Control Conference, v. 6, IEEE, 1999, 4137–4141 (Cat. No. 99CH36251)

[17] A. Robertson, G. Inalhan, J. How, “Spacecraft formation flying control design for the Orion mission”, Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 1999 | Zbl

[18] B. Morton, N. Weininger, J. Tierno, “Collective management of satellite clusters”, Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 1999, 1576–1584

[19] R. H. Vassar, R. B. Sherwood, “Formationkeeping for a pair of satellites in a circular orbit”, J. Guid. Control. Dyn., 8:2 (1985), 235–242 | DOI

[20] Q. Yan, V. Kapila, A. G. Sparks, “Pulse-based periodic control for spacecraft formation flying”, Proceedings of the 2000 American Control Conf. ACC, v. 1, IEEE, 2000, 374–378 (IEEE Cat. No.00CH36334) | DOI

[21] R. K. Yedavalli, A. G. Sparks, “Satellite formation flying control design based on hybrid control system stability analysis”, Proc. of the 2000 American Control Conference. ACC, v. 3, IEEE, 2000, 2210–2214 (IEEE Cat. No.00CH36334)

[22] Y. Ulybyshev, “Long-Term Formation Keeping of Satellite Constellation Using Linear-Quadratic Controller”, J. Guid. Control. Dyn., 21:1 (1998), 109–115 | DOI | Zbl

[23] F. De Bruijn, E. Gill, J. How, “Comparative analysis of Cartesian and curvilinear Clohessy-Wiltshire equations”, J. Aerosp. Eng. Sci. Appl., 3:2 (2011) | Zbl

[24] El'yasberg P. E., Introduction to the Theory of Flight of Artificial Earth Satellite, Israel Program for Scientific Translations Ltd, 1967, 357 pp. | MR

[25] C. Bombardelli, J. L. Gonzalo, J. Roa, “Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates”, Celest. Mech. Dyn. Astron., 127:1 (2017) | DOI | MR | Zbl

[26] D. K. Geller, T. A. Lovell, “Angles-Only Initial Relative Orbit Determination Performance Analysis using Cylindrical Coordinates”, J. Astronaut. Sci., 64:1 (2017), 72–96 | DOI

[27] S. Schweighart, R. J. Sedwick, “High-Fidelity Linearized J2 Model for Satellite Formation Flight”, J. Guid. Control. Dyn., 25:6 (2002), 1073–1080 | DOI

[28] S. Schweighart, R. Sedwick, “A perturbative analysis of geopotential disturbances for satellite cluster formation flying”, 2001 IEEE Aerospace Conf. Proc., v. 2, IEEE, 2001, 2/1001–2/1019 (Cat. No.01TH8542)

[29] J. P. De Vries, “Elliptic Elements in Terms of Small Increments of Position and Velocity Components”, AIAA J., 1:11 (1963), 2626–2629 | DOI

[30] Scott, Jr. J., Y. Shulman, “Terminal rendezvous for elliptical orbits”, 3rd and 4th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Virigina, 1966, 66

[31] J. Tschauner, P. Hempel, “Rendezvous Zueinem in Elliptischer Bahn Umlaufenden Ziel”, Acta Astronaut., 11:2 (1965), 104–109 | Zbl

[32] T. E. Carter, “State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example”, J. Guid. Control. Dyn., 21:1 (1998), 148–155 | DOI | Zbl

[33] K. Yamanaka, F. Ankersen, “New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit”, J. Guid. Control. Dyn., 25:1 (2002), 60–66 | DOI

[34] P. Sengupta, S. R. Vadali, “Relative Motion and the Geometry of Formations in Keplerian Elliptic Orbits with Arbitrary Eccentricity”, J. Guid. Control. Dyn., 30:4 (2007), 953–964 | DOI | MR

[35] M. Bando, A. Ichikawa, “Graphical Generation of Periodic Orbits of Tschauner-Hempel Equations”, J. Guid. Control. Dyn., 35:3 (2012), 1002–1007 | DOI

[36] C. Schiff, D. Rohrbaugh, J. Bristow, “Formation flying in elliptical orbits”, 2000 IEEE Aerospace Conference Proceedings, v. 7, IEEE, 2000, 37–47 (Cat. No.00TH8484) | DOI

[37] G. Inalhan, M. Tillerson, J. P. How, “Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits”, J. Guid. Control. Dyn., 25:1 (2002), 48–59 | DOI

[38] R. G. Melton, “Time-Explicit Representation of Relative Motion Between Elliptical Orbits”, J. Guid. Control. Dyn., 23:4 (2000), 604–610 | DOI

[39] Z. Dang, “Solutions of Tschauner-Hempel Equations”, J. Guid. Control. Dyn., 40:11 (2017), 2956–2960 | DOI

[40] M. Tillerson, J. How, “Formation flying control in eccentric orbits”, AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2001, 1–11

[41] J. F. Baig et al., Solar radiation pressure effects on very high-eccentric formation flying, Special Publ. ESA SP., No 654 SP, Eur. Sp. Agency, 2008 | Zbl