Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_6_a4, author = {I. A. Suslova and Y. V. Mashtakov and S. A. Shestakov}, title = {Comparison of relative motion models for spacecraft formation flying}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {75--91}, publisher = {mathdoc}, volume = {34}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_6_a4/} }
TY - JOUR AU - I. A. Suslova AU - Y. V. Mashtakov AU - S. A. Shestakov TI - Comparison of relative motion models for spacecraft formation flying JO - Matematičeskoe modelirovanie PY - 2022 SP - 75 EP - 91 VL - 34 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_6_a4/ LA - ru ID - MM_2022_34_6_a4 ER -
I. A. Suslova; Y. V. Mashtakov; S. A. Shestakov. Comparison of relative motion models for spacecraft formation flying. Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 75-91. http://geodesic.mathdoc.fr/item/MM_2022_34_6_a4/
[1] K. T. Alfriend, S. R. Vadali, H. Schaub, “Formation Flying Satellites: Control by an Astrodynamicist”, Dynamics of Natural and Artificial Celestial Bodies, 81:1–2 (2001), 57–62 | DOI | MR | Zbl
[2] D.-W. Gim, K. T. Alfriend, “State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit”, J. Guid. Control. Dyn., 26:6 (2003), 956–971 | DOI
[3] D.-W. Gim, K. T. Alfriend, “Satellite Relative Motion Using Differential Equinoctial Elements”, Celest. Mech. Dyn. Astron., 92:4 (2005), 295–336 | DOI | MR | Zbl
[4] H. Schaub, K. T. Alfriend, “J2 invariant relative orbits for spacecraft formations”, Celest. Mech. Dyn. Astron., 79:2 (2001), 77–95 | DOI | MR | Zbl
[5] K. T. Alfriend, H. Schaub, D. Gim, “Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies”, Guid. Control, 2000, 139–158
[6] D. Morgan et al, “Swarm-Keeping Strategies for Spacecraft Under J2 and Atmospheric Drag Perturbations”, J. Guid. Control. Dyn., 35:5 (2012), 1492–1506 | DOI
[7] J. Sullivan, S. Grimberg, S. D'Amico, “Comprehensive survey and assessment of spacecraft relative motion dynamics models”, J. Guid. Control. Dyn., 40:8 (2017), 1837–1859 | DOI
[8] Y. Xu et al, “Control for Satellites Formation Flying”, J. Aerosp. Eng., 20:1 (2007), 10–21 | DOI | Zbl
[9] W. H. Clohessy, R. S. Wiltshire, “Terminal Guidance System for Satellite Rendezvous”, J. Astronaut. Sci., 27:9 (1960), 653–678
[10] D. Ivanov, M. Ovchinnikov, S. Shestakov, “Satellite formation flying control by mass exchange”, Acta Astronaut., 102 (2014), 392–401 | DOI
[11] K. Alfriend et al, Spacecraft Formation Flying: Dynamics, Control and Navigation, 1 Edition, Butterworth-Heinemann, 2010, 402 pp.
[12] G. W. Hill, “Researches in the Lunar Theory”, Am. J. Math., 1:3 (1878), 245 | DOI | MR | Zbl
[13] H. Baoyin, L. Junfeng, G. Yunfeng, “Dynamical behaviors and relative trajectories of the spacecraft formation flying”, Aerosp. Sci. Technol., 6:4 (2002), 295–301 | DOI | Zbl
[14] K. D. Kumar, H. C. Bang, M. J. Tahk, “Satellite formation flying using along-track thrust”, Acta Astronaut., 61:7–8 (2007), 553–564 | DOI
[15] D. Redding, N. Adams, E. Kubiak, “Linear-quadratic stationkeeping for the STS Orbiter”, Astrodynamics Conference, 12:2 (1986), 248–255
[16] V. Kapila et al, “Spacecraft formation flying: dynamics and control”, Proceedings of the 1999 American Control Conference, v. 6, IEEE, 1999, 4137–4141 (Cat. No. 99CH36251)
[17] A. Robertson, G. Inalhan, J. How, “Spacecraft formation flying control design for the Orion mission”, Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 1999 | Zbl
[18] B. Morton, N. Weininger, J. Tierno, “Collective management of satellite clusters”, Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 1999, 1576–1584
[19] R. H. Vassar, R. B. Sherwood, “Formationkeeping for a pair of satellites in a circular orbit”, J. Guid. Control. Dyn., 8:2 (1985), 235–242 | DOI
[20] Q. Yan, V. Kapila, A. G. Sparks, “Pulse-based periodic control for spacecraft formation flying”, Proceedings of the 2000 American Control Conf. ACC, v. 1, IEEE, 2000, 374–378 (IEEE Cat. No.00CH36334) | DOI
[21] R. K. Yedavalli, A. G. Sparks, “Satellite formation flying control design based on hybrid control system stability analysis”, Proc. of the 2000 American Control Conference. ACC, v. 3, IEEE, 2000, 2210–2214 (IEEE Cat. No.00CH36334)
[22] Y. Ulybyshev, “Long-Term Formation Keeping of Satellite Constellation Using Linear-Quadratic Controller”, J. Guid. Control. Dyn., 21:1 (1998), 109–115 | DOI | Zbl
[23] F. De Bruijn, E. Gill, J. How, “Comparative analysis of Cartesian and curvilinear Clohessy-Wiltshire equations”, J. Aerosp. Eng. Sci. Appl., 3:2 (2011) | Zbl
[24] El'yasberg P. E., Introduction to the Theory of Flight of Artificial Earth Satellite, Israel Program for Scientific Translations Ltd, 1967, 357 pp. | MR
[25] C. Bombardelli, J. L. Gonzalo, J. Roa, “Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates”, Celest. Mech. Dyn. Astron., 127:1 (2017) | DOI | MR | Zbl
[26] D. K. Geller, T. A. Lovell, “Angles-Only Initial Relative Orbit Determination Performance Analysis using Cylindrical Coordinates”, J. Astronaut. Sci., 64:1 (2017), 72–96 | DOI
[27] S. Schweighart, R. J. Sedwick, “High-Fidelity Linearized J2 Model for Satellite Formation Flight”, J. Guid. Control. Dyn., 25:6 (2002), 1073–1080 | DOI
[28] S. Schweighart, R. Sedwick, “A perturbative analysis of geopotential disturbances for satellite cluster formation flying”, 2001 IEEE Aerospace Conf. Proc., v. 2, IEEE, 2001, 2/1001–2/1019 (Cat. No.01TH8542)
[29] J. P. De Vries, “Elliptic Elements in Terms of Small Increments of Position and Velocity Components”, AIAA J., 1:11 (1963), 2626–2629 | DOI
[30] Scott, Jr. J., Y. Shulman, “Terminal rendezvous for elliptical orbits”, 3rd and 4th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Virigina, 1966, 66
[31] J. Tschauner, P. Hempel, “Rendezvous Zueinem in Elliptischer Bahn Umlaufenden Ziel”, Acta Astronaut., 11:2 (1965), 104–109 | Zbl
[32] T. E. Carter, “State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example”, J. Guid. Control. Dyn., 21:1 (1998), 148–155 | DOI | Zbl
[33] K. Yamanaka, F. Ankersen, “New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit”, J. Guid. Control. Dyn., 25:1 (2002), 60–66 | DOI
[34] P. Sengupta, S. R. Vadali, “Relative Motion and the Geometry of Formations in Keplerian Elliptic Orbits with Arbitrary Eccentricity”, J. Guid. Control. Dyn., 30:4 (2007), 953–964 | DOI | MR
[35] M. Bando, A. Ichikawa, “Graphical Generation of Periodic Orbits of Tschauner-Hempel Equations”, J. Guid. Control. Dyn., 35:3 (2012), 1002–1007 | DOI
[36] C. Schiff, D. Rohrbaugh, J. Bristow, “Formation flying in elliptical orbits”, 2000 IEEE Aerospace Conference Proceedings, v. 7, IEEE, 2000, 37–47 (Cat. No.00TH8484) | DOI
[37] G. Inalhan, M. Tillerson, J. P. How, “Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits”, J. Guid. Control. Dyn., 25:1 (2002), 48–59 | DOI
[38] R. G. Melton, “Time-Explicit Representation of Relative Motion Between Elliptical Orbits”, J. Guid. Control. Dyn., 23:4 (2000), 604–610 | DOI
[39] Z. Dang, “Solutions of Tschauner-Hempel Equations”, J. Guid. Control. Dyn., 40:11 (2017), 2956–2960 | DOI
[40] M. Tillerson, J. How, “Formation flying control in eccentric orbits”, AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2001, 1–11
[41] J. F. Baig et al., Solar radiation pressure effects on very high-eccentric formation flying, Special Publ. ESA SP., No 654 SP, Eur. Sp. Agency, 2008 | Zbl