Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method
Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 22-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

CRMP is a mathematical model based on material balance equation. It can be used for solving different practical oil reservoirs engineering problems. The important limitation of this model is related with the fact, that the model cannot take into account the information about various stimulated treatments that frequently are performed in oil wells. In this article a new modeling method is presented. The method includes a new CRMP model modification that is free of the limitation mentioned above and an algorithm for determining the parameters values of the modified model. The forecasts accuracy of the modified models is shown by the numerical experiments results.
Keywords: mathematical modeling of field development, proxy-modeling, material balance model, CRM, capacitance resistive model.
@article{MM_2022_34_6_a1,
     author = {A. D. Bekman},
     title = {Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {22--36},
     publisher = {mathdoc},
     volume = {34},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_6_a1/}
}
TY  - JOUR
AU  - A. D. Bekman
TI  - Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 22
EP  - 36
VL  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_6_a1/
LA  - ru
ID  - MM_2022_34_6_a1
ER  - 
%0 Journal Article
%A A. D. Bekman
%T Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method
%J Matematičeskoe modelirovanie
%D 2022
%P 22-36
%V 34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_6_a1/
%G ru
%F MM_2022_34_6_a1
A. D. Bekman. Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method. Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 22-36. http://geodesic.mathdoc.fr/item/MM_2022_34_6_a1/

[1] Z. Alghareeb, J. Williams, “Optimum Decision-Making in Reservoir Managment Using Reduced-Order Models”, Proceedings SPE Annual Technical Conference and Exhibition, 2013, 4 | DOI

[2] S. Yoon, Z. Alghareeb, J. Williams, “Hyper-Reduced-Order Models for Subsurface Flow Simulation”, SPE Journal, 21 (2016) | DOI

[3] P. Ravi Ganesh, S. Mishra, “Reduced Physics Modeling of CO2 Injectivity”, Energy Procedia, 63 (2014), 3116–3125 | DOI

[4] Z. Guo, A. Reynolds, H. Zhao, “Waterflooding optimization with the INSIM-FT data-driven model”, Computational Geosciences, 22 (2018) | DOI | MR

[5] S. Mohaghegh, F. Abdulla, “Production Management Decision Analysis Using AI-Based Proxy Modeling of Reservoir Simulations”, A Look-Back Case Study, 2014 | DOI | Zbl

[6] R. W. Holanda, E. Gildin, J. L. Jensen, “Improved Waterflood Analysis Using the Capacitan-ce-Resistance Model Within a Control Systems Framework”, SPE Latin American and Caribbean Petroleum Engineering Conference, SPE-177106-MS | DOI

[7] R. W. Holanda, E. Gildin, J. L. Jensen, L. W. Lake, C. S. Kabir, “A State-of-the-Art Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecasting”, Energies, 2018 | DOI

[8] A. D. Bekman, S. V. Stepanov, A. A. Ruchkin, D. V. Zelenin, “Novyi algoritm nakhozhdeniia optimalnogo resheniia zadachi opredeleniia koeffitsientov vzaimovliianiia skvazhin v ramkakh modeli CRM”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 5:3 (2019), 164–185 | DOI

[9] D. Kaviani, M. Soroush, J. L. Jensen, How accurate are Capacitance Model connectivity estimates?, Journal of Petroleum Science and Engineering, 122 (2014), 439–452 | DOI

[10] A. E. Gubanova, B. A. Khabibullin, D. A. Koroteev, D. M. Orlov, “Modifitsirovannaia model materialnogo balansa CR tipa dlia prognoza dobychi uglevodorodov s uchetom geologo-tekhnologicheskikh meropriiatii”, Rossiiskaia neftegazovaia tekhnicheskaia konferentsiia SPE (12–15 oktiabria 2021)

[11] R. Fletcher, “A General Quadratic Programming Algorithm”, IMA Journal of Applied Mathematics, 7:1 (1971), 76–91 | DOI | MR | Zbl

[12] S. V. Stepanov, A. V. Stepanov, A. A. Ruchkin, A. D. Bekman, T. A. Pospelova, Ariadna 2.0, Svidetelstvo o registratsii programmy dlia EVM, No 2020613401, 2020