Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_6_a1, author = {A. D. Bekman}, title = {Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {22--36}, publisher = {mathdoc}, volume = {34}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_6_a1/} }
TY - JOUR AU - A. D. Bekman TI - Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method JO - Matematičeskoe modelirovanie PY - 2022 SP - 22 EP - 36 VL - 34 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_6_a1/ LA - ru ID - MM_2022_34_6_a1 ER -
A. D. Bekman. Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method. Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 22-36. http://geodesic.mathdoc.fr/item/MM_2022_34_6_a1/
[1] Z. Alghareeb, J. Williams, “Optimum Decision-Making in Reservoir Managment Using Reduced-Order Models”, Proceedings SPE Annual Technical Conference and Exhibition, 2013, 4 | DOI
[2] S. Yoon, Z. Alghareeb, J. Williams, “Hyper-Reduced-Order Models for Subsurface Flow Simulation”, SPE Journal, 21 (2016) | DOI
[3] P. Ravi Ganesh, S. Mishra, “Reduced Physics Modeling of CO2 Injectivity”, Energy Procedia, 63 (2014), 3116–3125 | DOI
[4] Z. Guo, A. Reynolds, H. Zhao, “Waterflooding optimization with the INSIM-FT data-driven model”, Computational Geosciences, 22 (2018) | DOI | MR
[5] S. Mohaghegh, F. Abdulla, “Production Management Decision Analysis Using AI-Based Proxy Modeling of Reservoir Simulations”, A Look-Back Case Study, 2014 | DOI | Zbl
[6] R. W. Holanda, E. Gildin, J. L. Jensen, “Improved Waterflood Analysis Using the Capacitan-ce-Resistance Model Within a Control Systems Framework”, SPE Latin American and Caribbean Petroleum Engineering Conference, SPE-177106-MS | DOI
[7] R. W. Holanda, E. Gildin, J. L. Jensen, L. W. Lake, C. S. Kabir, “A State-of-the-Art Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecasting”, Energies, 2018 | DOI
[8] A. D. Bekman, S. V. Stepanov, A. A. Ruchkin, D. V. Zelenin, “Novyi algoritm nakhozhdeniia optimalnogo resheniia zadachi opredeleniia koeffitsientov vzaimovliianiia skvazhin v ramkakh modeli CRM”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 5:3 (2019), 164–185 | DOI
[9] D. Kaviani, M. Soroush, J. L. Jensen, How accurate are Capacitance Model connectivity estimates?, Journal of Petroleum Science and Engineering, 122 (2014), 439–452 | DOI
[10] A. E. Gubanova, B. A. Khabibullin, D. A. Koroteev, D. M. Orlov, “Modifitsirovannaia model materialnogo balansa CR tipa dlia prognoza dobychi uglevodorodov s uchetom geologo-tekhnologicheskikh meropriiatii”, Rossiiskaia neftegazovaia tekhnicheskaia konferentsiia SPE (12–15 oktiabria 2021)
[11] R. Fletcher, “A General Quadratic Programming Algorithm”, IMA Journal of Applied Mathematics, 7:1 (1971), 76–91 | DOI | MR | Zbl
[12] S. V. Stepanov, A. V. Stepanov, A. A. Ruchkin, A. D. Bekman, T. A. Pospelova, Ariadna 2.0, Svidetelstvo o registratsii programmy dlia EVM, No 2020613401, 2020