Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_6_a0, author = {M. D. Bragin}, title = {Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--21}, publisher = {mathdoc}, volume = {34}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_6_a0/} }
M. D. Bragin. Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws. Matematičeskoe modelirovanie, Tome 34 (2022) no. 6, pp. 3-21. http://geodesic.mathdoc.fr/item/MM_2022_34_6_a0/
[1] N. N. Kalitkin, P. V. Koryakin, Chislennye metody, v. 2, Metody matematicheskoj fiziki, Izdatel'skij centr «Akademiya», M., 2013, 304 pp.
[2] P.-O. Persson, “High-order LES simulations using implicit-explicit Runge-Kutta schemes”, Proc. of the 49th AIAA Aerospace Sciences Meeting and Exhibit, 2011, AIAA 2011-684
[3] U. M. Ascher, S. J. Ruuth, R. J. Spiteri, “Implicit-explicit Runge Kutta methods for time-dependent partial differential equations”, Appl. Numer. Math., 25 (1997), 151–167 | DOI | MR | Zbl
[4] C. A. Kennedy, M. H. Carpenter, “Additive Runge-Kutta schemes for convection-diffusion-reaction equations”, Appl. Numer. Math., 44 (2003), 139–181 | DOI | MR | Zbl
[5] A. Kanevsky, M. H. Carpenter, D. Gottlieb, J. S. Hesthaven, “Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes”, J. Comput. Phys., 225 (2007), 1753–1781 | DOI | MR | Zbl
[6] M. Shoeybi, M. Svärd, F. E. Ham, P. Moin, “An adaptive implicit-explicit scheme for the DNS and LES of compressible flows on unstructured grids”, J. Comput. Phys., 229 (2010), 5944–5965 | DOI | MR | Zbl
[7] S. Noelle, G. Bispen, K. R. Arun, M. Lukáčová-Medvidová, C. D. Munz, “A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics”, SIAM J. Sci. Comput., 36:6 (2014), B989–B1024 | DOI | MR | Zbl
[8] S. Avgerinos, F. Bernard, A. Iollo, G. Russo, “Linearly implicit all Mach number shock capturing schemes for the Euler equations”, J. Comput. Phys., 393 (2019), 278–312 | DOI | MR | Zbl
[9] W. Boscheri, G. Dimarco, R. Loubère, M. Tavelli, M. H. Vignal, “A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations”, J. Comput. Phys., 415 (2020), 109486 | DOI | MR | Zbl
[10] G. Bispen, K. R. Arun, M. Lukáčová-Medvidová, S. Noelle, “IMEX large time step finite volume methods for low Froude number shallow water flows”, Commun. Comput. Phys., 16:2 (2014), 307–347 | DOI | MR | Zbl
[11] A. Chertock, S. Cui, A. Kurganov, T. Wu, “Steady state and sign preserving semi-implicit Runge-Kutta methods for ODEs with stiff damping term”, SIAM J. Numer. Anal., 53:4 (2015), 2008–2029 | DOI | MR | Zbl
[12] L. Pareschi, G. Russo, “Implicit-explicit Runge-Kutta schemes and applications to hyper-bolic systems with relaxation”, J. Sci. Comput., 25:1/2 (2005), 129–155 | DOI | MR | Zbl
[13] S. Boscarino, L. Pareschi, G. Russo, “Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit”, SIAM. J. Sci. Comput., 35:1 (2013), A22–A51 | DOI | MR | Zbl
[14] H. Wang, C.-W. Shu, Q. Zhang, “Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems”, SIAM J. Numer. Anal., 53:1 (2015), 206–227 | DOI | MR | Zbl
[15] H. Wang, Q. Zhang, S. Wang, C. W. Shu, “Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems”, Sci. China Math., 63 (2020), 183–204 | DOI | MR | Zbl
[16] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR | Zbl
[17] B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Comput. Math. Math. Phys., 53:2 (2013), 205–214 | DOI | MR | Zbl
[18] M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Comput. Math. Math. Phys., 56:6 (2016), 947–961 | DOI | MR | Zbl
[19] M. D. Bragin, B. V. Rogov, “On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law”, Dokl. Math., 94:1 (2016), 382–386 | DOI | MR | Zbl
[20] M. D. Bragin, B. V. Rogov, “Iterative approximate factorization of difference operators of high-order accurate bicompact schemes for multidimensional nonhomogeneous quasilinear hyperbolic systems”, Comput. Math. Math. Phys., 58:3 (2018), 295–306 | DOI | MR | Zbl
[21] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Appl. Numer. Math., 139 (2019), 136–155 | DOI | MR | Zbl
[22] M. D. Bragin, B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Comput. Math. Math. Phys., 50:5 (2020), 864–878 | DOI | MR | Zbl
[23] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR | Zbl
[24] M. D. Bragin, B. V. Rogov, “Accuracy of bicompact schemes in the problem of Taylor-Green vortex decay”, Comput. Math. Math. Phys., 61:11 (2021), 1723–1742 | DOI | MR | Zbl
[25] M. D. Bragin, “High-order bicompact schemes for the quasilinear multidimensional diffusion equation”, Appl. Numer. Math., 174 (2022), 112–126 | DOI | MR | Zbl
[26] R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O. D. E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[27] G. I. Marchuk, Metody rasshchepleniya, Nauka, M., 1988, 263 pp. | MR
[28] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, J. Comput. Phys., 83 (1989), 32–78 | DOI | MR | Zbl
[29] R. Borges, M. Carmona, B. Costa, W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, J. Comput. Phys., 227:6 (2008), 3191–3211 | DOI | MR | Zbl
[30] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, U. Frisch, “Small scale structure of the Taylor Green vortex”, J. Fluid Mech., 130 (1983), 411–452 | DOI | Zbl
[31] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl