Modeling of external force action on a shell mold for pouring steel
Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 61-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper formulates and solves the problem of determining the force effect of the support filler on the resistance of the shell form during the crystallization of liquid metal (steel) in it. As the leading physical quantity that affects the crack resistance of shell form, the tensile normal stress that occurs in the outer layers of the mold in the first temporary moments when pouring liquid metal into it is accepted. The force factor affecting the stress-strain state of is the friction between the shell form and the support filler, which appears during the elastic expansion of the outer layer in the shell form as a result of temperature exposure from the crystallizing liquid metal. A mathematical programming problem (min max function) is formulated to determine the coefficient of friction between the shell form and support filler in order to obtain the lowest value of the normal tensile stress in the support filler over the considered area in the presence of a system of constraints. An axisymmetric body of rotation having four regions is considered: liquid metal, solid metal, shell shape, support filler, which is considered to be a solid body that creates friction at the contact point with the outer layer of. To solve the problem, the equations of the linear theory of elasticity, the equation of thermal conductivity and a proven numerical method are used, according to which the area under study is divided by a system of orthogonal surfaces into elements. For each element, a formulated system of equations is written in a difference form. An algorithm for solving the problem is developed and the results of the solution are presented, stress diagrams in the support filler are constructed according to the found value of the coefficient of friction. The analysis of the obtained results is given.
Keywords: investment casting, shell mold, stress state, support filler, crack resistance, numerical method, software, stress, displacement.
Mots-clés : force action, solution algorithm
@article{MM_2022_34_5_a3,
     author = {A. I. Evstigneev and E. A. Dmitriev and D. V. Chernyshova and V. I. Odinokov and A. A. Evstigneeva and E. P. Ivankova},
     title = {Modeling of external force action on a shell mold for pouring steel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--72},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_5_a3/}
}
TY  - JOUR
AU  - A. I. Evstigneev
AU  - E. A. Dmitriev
AU  - D. V. Chernyshova
AU  - V. I. Odinokov
AU  - A. A. Evstigneeva
AU  - E. P. Ivankova
TI  - Modeling of external force action on a shell mold for pouring steel
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 61
EP  - 72
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_5_a3/
LA  - ru
ID  - MM_2022_34_5_a3
ER  - 
%0 Journal Article
%A A. I. Evstigneev
%A E. A. Dmitriev
%A D. V. Chernyshova
%A V. I. Odinokov
%A A. A. Evstigneeva
%A E. P. Ivankova
%T Modeling of external force action on a shell mold for pouring steel
%J Matematičeskoe modelirovanie
%D 2022
%P 61-72
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_5_a3/
%G ru
%F MM_2022_34_5_a3
A. I. Evstigneev; E. A. Dmitriev; D. V. Chernyshova; V. I. Odinokov; A. A. Evstigneeva; E. P. Ivankova. Modeling of external force action on a shell mold for pouring steel. Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 61-72. http://geodesic.mathdoc.fr/item/MM_2022_34_5_a3/

[1] A. I. Evstigneev, V. I. Odinokov, E. A. Dmitriev, E. P. Ivankova, A. V. Sviridov, “Influence of External Heat Exposure on the Stress State of Shell Forms by Smelting Models”, Mathematical Models and Computer Simulations, 13:5 (2021), 780–789 | DOI | MR | MR | Zbl

[2] A. I. Evstigneev, V. I. Odinokov, E. A. Dmitriev, E. P. Ivankova, A. V. Sviridov, “Vliianie temperatury nagreva opornogo napolnitelia na osobennosti napriazhennogo sostoianiia obolochkovykh form pri zalivke stali”, Liteinoe proizvodstvo, 2021, no. 3, 20–24 | MR

[3] V. I. Odinokov, E. A. Dmitriev, A. I. Evstigneev i dr., “Modelirovanie i optimizatsiia vybora svoistv materialov i struktur obolochkovykh form po vyplavliaemym modeliam”, Izv. BYZov. Chernaia metallurgiia, 63:9 (2020), 742–754

[4] Yu. V. Golenkov, V. A. Rybkin, R. F. Yusipov, “Silovoe vzaimodeistvie opornogo materiala s obolochkoi formy pri lite po vyplavliaemym modeliam”, Liteinoe proizv., 1988, no. 2, 14–15

[5] V. I. Odinokov, A. I. Evstigneev, E. A. Dmitriev, D. V. Chernyshov, A. A. Evstigneeva, “Vliianie vnutrennego faktora na treshchinostoikost obolochkovoi formy po vyplavliaemym modeliam”, Izv. BYZov. Chernaia metallurgiia, 65:2 (2022), 137–144

[6] S. I. Repiakh, Tekhnologocheskie osnovy litia po vyplavliaemym modeliam, Lira, Dnepropetrovsk, 2006, 1056 pp.

[7] G. M. Sevastianov, A. M. Sevastianov, V. I. Odinokov, “Ob odnoi nachalno-kraevoi zadache teploprovodnosti v sisteme s fazovymi perekhodami”, Matematicheskoe modelirovanie, 2013, no. 3, 119–133 | MR | Zbl

[8] V. I. Odinokov, B. G. Kaplunov, A. V. Peskov, A. V. Bakov, Matematicheskoe modelirovanie slozhnykh tekhnologicheskikh protsessov, Nauka, M., 2008, 176 pp. | MR

[9] V.I. Odinokov, A.N. Prokudin, A.M. Sergeeva, G.M. Sevastianov, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2012661389 «Odissei», Zaregistrirovano v Reestre program dlia EVM 13.12.2012 g.

[10] V.I. Odinmokov, E.A. Dmitriev, A.I. Evstigneev, E.P. Ivankova, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2021616121 «Programma matematicheskogo modelirovaniia optimizatsii vybora temperatury opornogo napolnitelia, fizicheskikh svoistv materiala i structury obolochkovoi formy po vyplavliaemym modeliam dlia povysheniia ee treshchinostoikosti pri okhlazhdenii v nei otlivki», Zaregistrirovano v Reestre program dlia EVM 16.04.2021

[11] V. I. Odinokov, E. A. Dmitriev, A. I. Evstigneev, V. I. Sviridov, Matematicheskoe modelirovanie protsessov polucheniia otlivok v keramicheskie obolochkovye formy, Mashinostroenie, M., 2020, 256 pp.