Mathematical models of ionization of air plasma by electron flux
Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 46-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to the construction of models of ionization collisions of electrons with air plasma is proposed. The approach is based on the calculation of probabilistic distributions of energy losses by an incident electron during the ionization of plasma atoms and ions. The distributions are calculated by processing the impact ionization cross sections obtained in the distorted wave approximation. A model of individual collisions for a detail description of ionization processes in plasma and an approximate model of continuous slowing down allowing significantly simplify the calculations in the field of applicability of the model are constructed. The stopping powers of electrons in oxygen-nitrogen gas plasma are obtained.
Keywords: collisional ionization cross sections, model of individual collisions, continuous slowing down model.
@article{MM_2022_34_5_a2,
     author = {M. E. Zhukovskiy and V. S. Zakharov and S. V. Podolyako},
     title = {Mathematical models of ionization of air plasma by electron flux},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_5_a2/}
}
TY  - JOUR
AU  - M. E. Zhukovskiy
AU  - V. S. Zakharov
AU  - S. V. Podolyako
TI  - Mathematical models of ionization of air plasma by electron flux
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 46
EP  - 60
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_5_a2/
LA  - ru
ID  - MM_2022_34_5_a2
ER  - 
%0 Journal Article
%A M. E. Zhukovskiy
%A V. S. Zakharov
%A S. V. Podolyako
%T Mathematical models of ionization of air plasma by electron flux
%J Matematičeskoe modelirovanie
%D 2022
%P 46-60
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_5_a2/
%G ru
%F MM_2022_34_5_a2
M. E. Zhukovskiy; V. S. Zakharov; S. V. Podolyako. Mathematical models of ionization of air plasma by electron flux. Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 46-60. http://geodesic.mathdoc.fr/item/MM_2022_34_5_a2/

[1] M. E. Zhukovskiy, S. V. Podoliako, R. V. Uskov, “Model of individual collisions for description of electron transport in matter”, Math. Models Comput. Simul., 4 (2012), 101–109 | DOI

[2] International Commission on Radiation Units and Measurements, ICRU Report 37, ICRU, 1984

[3] W. Lotz, “Electron-impact ionization cross-sections for atoms up to Z=108”, Ztschr. Phys., 232 (1970), 101

[4] N. F. Mott, H. S. W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965

[5] J. J. Thomson. XLII, “Ionization by moving electrified particles”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23:136 (1912), 449–457 | DOI

[6] M. R. H. Rudge, “Theory of the ionization of atoms by electron impact”, Rev. Mod. Phys., 40:3 (1968), 564 | DOI

[7] L. Vriens, “Binary-encounter electron-atom collision theory”, Phys. Rev., 141:1 (1966), 88 | DOI

[8] R. C. Stabler, “Classical impulse approximation for inelastic electron-atom collisions”, Phys. Rev., 133 (1964), A1268–A1273 | DOI

[9] M. Gryziński, “Two-Particle Collisions. I. General Relations for Collisions in the Laboratory System”, Phys. Rev., 138 (1965), A305, A332, A336 | DOI | MR

[10] C. Møller, “Zur Theorie des Durchgangs schneller Elektronen durch Materie”, Ann. Phys., 406:5 (1932), 531–585 | DOI

[11] V. G. Novikov, A. D. Solomiannaia, V. S. Zakharov, “Kvantovo-statisticheskie metody rascheta opticheskikh i termodinamicheskikh svoistv plotnoi plazmy”, Entsiklopediia nizkotemperaturnoi plazmy. Seriia B, v. VII-1, Ianus-K, M., 2008, 378–435

[12] V. A. Vainshtein, I. I. Sobelman, E. A. Yukov, Vozbuzhdenie atomov i ushirenie spektralnykh linii, Nauka, M., 1979

[13] V. S. Zakharov, M. E. Zhukovskii, M. B. Markov, S. V. Zakharov, “O modelirovanii udarnoi ionizatsii ionov v priblizhenii iskazhennikh voln”, Matem. Modelirovanie, 33:10 (2021), 51–64 | DOI | Zbl

[14] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaia teoriia uglovogo momenta, Nauka, L., 1975

[15] K. L. Bell et al, “Recommended data on the electron impact ionization of light atoms and ions”, J. Phys. Chem. Ref. Data, 12 (1983), 891–916 | DOI

[16] D. H. Crandall, R. A. Phaneuf, D. A. Gregory, Electron Impact Ionization of Multicharged Ions, Report No ORNL/TM-7020, Oakridge National Lab., Tennessee, USA, 1979

[17] E. D. Donets, V. P. Ovsiannikov, Soobshcheniia OIIAI, R7-10780, Dubna, 1977

[18] S. M. Ermakov, G. A. Mikhailov, Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[19] S. M. Seltzer, “An Overview of ETRAN Monte Carlo Methods”, Monte Carlo Transport of Electrons and Photons, eds. Th. M. Jenkins, W. R. Nelson, A. Rindi, Plenum Press, NY, 1988, 153 | DOI

[20] J.A. Halbleib, R.P. Kensek, T.A. Mehlhom, G.D. Valdez, S.M. Seltzer, M.J. Berger, ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes, Report SAND91-1634, Sandia National Laboratories, Albuquerque, NM, 1992

[21] M. J. Berger, S. M. Seltzer, Monte Carlo Transport of Electrons and Photons, Chapters 7, 8 and 9, eds. T.M. Jenkins, W. R. Nelson, A. Rindi, Plenum Press, NY, 1988

[22] “PENELOPE — A Code System for Monte Carlo Simulation of Electron and Photon Transport”, Workshop Proceedings (Issy-les-Moulineaux, France, 5-7 November 2001)

[23] I. M. Sobol', Chislennye metody Monte-Karlo, Nauka, M., 1973

[24] M. E. Zhukovskiy, R. V. Uskov, “Hybrid parallelization of the algorithms of radiation cascade transport modeling”, Math. Models Comput. Simul., 7:6 (2015), 601–610 | DOI | MR