Modeling of the stages of verification of the suitability of a short section of a gas pipeline tooperation
Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 27-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

When modeling the processes of gas injection into an elementary section and gas outflow into infinite space, quasi-one-dimensional equations of pipeline gas transport are used in the approximation of a short pipeline, when the gas pressure gradient is formed only under the influence of the local component of the gas inertia force, and N.E. Zhukowsky equation on the gas outflow rate. The equations for the conservation of momentum and mass are linearized with the introduction of the gas mass flow rate, and the first boundary condition is presented as a linear dependence on the sought functions. The solution area is divided into rectangles with the dimensions of the section length and the conditional period of the problem, which corresponds to the time of the excitation travel over the entire length of the section. For the first conditional period, the formulas for calculating the pressure and gas mass flow rate were obtained by the method of characteristics. The ways of using these formulas to obtain a solution for the subsequent conditional periods were shown. Some discontinuous results of calculations for pressure, mass flow rate and gas flow rate are presented.
Keywords: hyperbolic system of equations, method of characteristics, pressure, mass flow rate, velocity, conditional period, laws of pressure drop and increase.
@article{MM_2022_34_5_a1,
     author = {I. Q. Khujaev and S. S. Akhmadjonov and M. K. Mahkamov},
     title = {Modeling of the stages of verification of the suitability of a short section of a gas pipeline tooperation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--45},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_5_a1/}
}
TY  - JOUR
AU  - I. Q. Khujaev
AU  - S. S. Akhmadjonov
AU  - M. K. Mahkamov
TI  - Modeling of the stages of verification of the suitability of a short section of a gas pipeline tooperation
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 27
EP  - 45
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_5_a1/
LA  - ru
ID  - MM_2022_34_5_a1
ER  - 
%0 Journal Article
%A I. Q. Khujaev
%A S. S. Akhmadjonov
%A M. K. Mahkamov
%T Modeling of the stages of verification of the suitability of a short section of a gas pipeline tooperation
%J Matematičeskoe modelirovanie
%D 2022
%P 27-45
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_5_a1/
%G ru
%F MM_2022_34_5_a1
I. Q. Khujaev; S. S. Akhmadjonov; M. K. Mahkamov. Modeling of the stages of verification of the suitability of a short section of a gas pipeline tooperation. Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 27-45. http://geodesic.mathdoc.fr/item/MM_2022_34_5_a1/

[1] V. V. Grachev, M. A. Guseinzade, B. I. Ksendz, E. I. Iakovlev, Slozhnye truboprovodnye sistemy, Nedra, M., 1982, 256 pp.

[2] V. V. Grachev, S. G. Shcherbakov, E. I. Iakovlev, Dinamika truboprovodnykh sistem, Nauka, M., 1987, 438 pp.

[3] S. A. Bobrovskii, S. G. Shcherbakov, M. A. Gusein-zade, Dvizhenie gaza v gazoprovodakh s putevym otborom, Nauka, M., 1972, 193 pp.

[4] I. A. Charnyi, Neustanovivsheesia dvizhenie realnoi zhidkosti v trubakh, Izd. 2-e, Nedra, M., 1975, 296 pp.

[5] A. Lewandowski, New Numerical Methods for Transient Modeling of Gas Pipeline Networks, Pipeline Simulation Interest Group, NM, 1995

[6] V. E. Seleznev, V. V. Aleshin, S. N. Prialov, Matematicheskoe modelirovanie truboprovodnykh setei i sistem kanalov: metody, modeli, algoritmy, ed. V.E. Seleznev, MAKS Press, M., 2007, 695 pp.

[7] Agegnehu Atena, Tilahun Muche, “Modeling and Simulation of Real Gas Flow in a Pipeline”, Journal of Applied Mathematics and Physics, 4 (2016), 1652–1681 | DOI

[8] A. Bermúdez, J. González-Díaz, F. González-Dièguez, “Existence of solution to a model for gas transportation networks on non-flat topography”, Nonlinear Analysis: Real World Applications, 37 (2017), 71–93 | DOI | MR | Zbl

[9] O. Sh. Bozorov, I. K. Khujaev, A. A. Ismailov, “An Iterative Method for Solving the Problem of Pipeline Transportation of Gas along a Relief Track”, International Journal of Advanced Research in Science, Engineering and Technology, 7:5 (2020)

[10] A. B. Figueiredo, R. M. Baptista, F. B. Freitas Rachid, G. C. Rachid Bodstein, “Numerical simulation of stratified-pattern two-phase flow in gas pipelines using a two-fluid model”, International Journal of Multiphase Flow, 88 (2017), 30–49 | DOI | MR

[11] G. I. Kurbatova, N. N. Ermolaeva, B. Ya. Nikitchuk, “Glaciation and Thawing Models of the Outer Surface of an Offshore Gas Pipeline in the Northern Seas”, Math. Mod. Comp. Simul., 11:6 (2019), 997–1006 | DOI | MR | Zbl

[12] M. Bogdevičius, J. Janutènienè, K. Jonikas, E. Guseinovienè, M. Drakšas, “Mathematical modeling of oil transportation by pipelines using anti-turbulent additives”, Journal of Vibroengineering, 15:1 (2013), 419–427

[13] Hang Dong, Jian Zhao, Weiqiang Zhao, Minglin Si, Junyang Liu, “Numerical study on the thermal characteristics and its influence factors of crude oil pipeline after restart”, Case Studies in Thermal Engineering Available online, 14 (2019) | MR

[14] Z. Hafsia, S. Elaouda, M. Mishra, “A computational modelling of natural gas flow in looped network: Effect of upstream hydrogen injection on the structural integrity of gas pipelines”, Journal of Natural Gas Science and Engineering, 64 (2019), 107–117 | DOI

[15] M. Kh. Khairullin, M. N. Shamsiev, L. A. Tulupov, Modelirovanie gidratoobrazovaniia v gazoprovodakh, Neftegazovoe delo, 2005

[16] Y. A. Kriksin, V. F. Tishkin, “Hybrid Approach to Solve Single-Dimensional Gas Dynamics Equations”, Math. Mod. Comp. Simul., 11:2 (2019), 256–265 | DOI | MR | Zbl

[17] C. A. Dorao, M. Fernandino, “Simulation of transients in natural gas pipelines”, Journal of Natural Gas Science and Engineering, 3:1 (2011), 349–355 | DOI

[18] A. M. Elsharkawy, “Efficient methods for calculations of compressibility, density and viscosity of natural gases”, Fluid Phase Equilibria, 218:1 (2004), 1–13 | DOI

[19] Fang Yuan, Yan Zeng, Rongmo Luo, Boo Cheong Khoo, “Numerical and experimental study on the generation and propagation of negative wave in high-pressure gas pipeline leakage”, Journal of Loss Prevention in the Process Industries, 65 (2020), 104–129

[20] I. Khujaev, Kh. Mamadaliev, O. Bazarov, Sh. Khodjayev, “Numerical method for solving the problem of the gas-dynamic state of a main gas pipeline section relief of a variable cross-sectional area”, VII International Scientific Conference (IPICSE 2020) (11-14 November 2020) | Zbl

[21] A. I. Lopato, P. S. Utkin, “Numerical Study of Detonation Wave Propagation in the Variable Cross-Section Channel using unstructured computational grids”, J. of Combustion, 2018, 3635797, 8 pp. | DOI

[22] B. M. Budak, A. A. Samarski, A. N. Tikhonov, Sbornik zadach po matematicheskoi fizike, Nauka, M., 1972, 678 pp. | MR

[23] A. N. Tikhonov, A. A. Samarski, Uravnenia matematicheskoi fiziki, Nauka, M., 1972, 736 pp. | MR

[24] G.B. Whitham F.R.S., Linear and Nonlinear Waves, John Wiley Sons, NY, 1974 | MR | Zbl

[25] O. V. Rudenko, Fundamentals of nonlinear acoustics, Publishing house of Moscow State University, M., 1983

[26] O. Sh. Bozorov, M. M. Mamatkulov, Analiticheskie issledovaniia nelineinykh gidrodinamicheskikh iavlenii v sredakh s medlenno meniaiushchimisia parametrami, TITLP, Tashkent, 2015, 96 pp.

[27] K. A. Naugolnykh, I. B. Esipov, “Propagation of a nonlinear sound wave in an unconsolidated granular medium”, Acoustic journal, 51:6 (2005), 705–712

[28] I. K. Khuzhaev, Kh. A. Mamadaliev, M. A. Kukanova, “Analiticheskoe reshenie zadachi o rasprostranenii volny uplotneniia v naklonnom truboprovode, vyzvannoe tormozheniem zhidkosti”, Problemy vychislitelnoi i prikladnoi matematiki, 2, Tashkent, 2015, 65–79

[29] I. K. Khuzhaev, S. S. Akhmadzhonov, Kh. Kh. Aminov, “Primenenie metoda kharakteristik dlia resheniia zadachi ob elementarnom uchastke gazoprovoda pri istechenii gaza iz ego kontsa v okruzhaiushchuiu sredu”, Problemy mekhaniki, 1 (30), Tashkent, 2021, 65–75

[30] V. E. Seleznev, V. V. Aleshin, S. N. Prialov, Sovremennye kompiuternye trenazhery v truboprovodnom transporte. Matematicheskie metody modelirovaniia i prakticheskoe primenenie, MAKS Press, M., 2007, 200 pp.

[31] A. A. Samarskii, Iu. P. Popov, Raznostnye skhemy gazovoi dinamiki, Nauka, M., 1975, 352 pp. | MR