Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing
Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A computational procedure is proposed for refining the position and shape of threedimensional acoustic inhomogeneities during sound sounding of the medium. The procedure, called a computational magnifier, is based on a high-speed algorithm for solving the inverse problem of acoustic sounding in areas of a special structure (threedimensional space, cylindrical area, etc.) with a complex wave field amplitude as data recorded “in a thin layer”. The computational magnifying procedure consists in "fast" solving the inverse problem using the specified algorithm on a fixed grid in the original three-dimensional region, narrowing the original region to a nested new region containing inhomogeneities, and then solving the inverse problem in this new region on a grid of the same size. Repeating this procedure several times, one can significantly refine the position and shape of the investigated zoomed inhomogeneities. The computational magnifying procedure works much faster than solving the inverse problem on fine threedimensional grids in the original domain. This makes it easy to implement the procedure on personal computers (PCs) of average performance. The article proposes a method for the numerical assessment of the quality of clarification of the position and shape of the studied inhomogeneities, based on the use of histograms. A number of numerical model PC experiments on the use of a computational magnifier in a cylindrical region are presented. These include: analysis of the quality of position and shape refinement using histograms when solving an inverse problem with accurate and noisy data, the effect of averaging noisy data for determining the position and shape, experiments to assess the resolution of a computational magnifier, etc. The operating time of the computational magnifier in these three-dimensional numerical experiments was about 10 seconds.
Keywords: acoustic sounding, 3D-inverse problem of determining inhomogeneities, fast regularizing algorithm
Mots-clés : computational magnifier.
@article{MM_2022_34_5_a0,
     author = {A. B. Bakushinsky and A. S. Leonov},
     title = {Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/}
}
TY  - JOUR
AU  - A. B. Bakushinsky
AU  - A. S. Leonov
TI  - Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 3
EP  - 26
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/
LA  - ru
ID  - MM_2022_34_5_a0
ER  - 
%0 Journal Article
%A A. B. Bakushinsky
%A A. S. Leonov
%T Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing
%J Matematičeskoe modelirovanie
%D 2022
%P 3-26
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/
%G ru
%F MM_2022_34_5_a0
A. B. Bakushinsky; A. S. Leonov. Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing. Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 3-26. http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/

[1] A. A. Goryunov, A. V. Saskovets, Obratnye zadachi rasseianiia v akustike, MGU, M., 1989 | MR

[2] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Appl. Math. Sci., 93, 2nd ed., Springer, Berlin, 1998 | DOI | MR | Zbl

[3] A. G. Ramm, Multidimensional Inverse Scattering Problems, Pitman Monogr. Surv. Pure Appl. Math., 51, Longman Scientific Technical, Harlow, 1992 | MR | Zbl

[4] A. Bakushinsky, A. Goncharsky, Ill-Posed Problems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[5] A. B. Bakushinsky, M. Yu. Kokurin, Iterative methods for approximate solution of inverse problems. Mathematics and Its Applications, Springer, Dordrecht, 2004 | MR

[6] A. V. Goncharskii, S. Y. Romanov, “Two approaches to the solution of coefficient inverse problems for wave equations”, Comput. Math. and Math. Phys., 52:2 (2012), 263–269 | MR

[7] A. V. Goncharskii, S. Y. Romanov, “Two approaches to the solution of coefficient inverse problems for wave equations”, Comput. Math. and Math. Phys., 52:2 (2012), 263–269 | DOI | MR

[8] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), 1–67 | DOI | MR

[9] L. N. Pestov, V. M. Bolgova, A. N. Danilin, “Chislennaia rekonstruktsiia trekhmernoi skorosti zvuka metodom granichnogo upravleniia”, Vestnik Yugorskogo gosuniversiteta, 2011, no. 3, 92–98

[10] V. A. Burov, N. V. Alekseenko, O. D. Rumyantseva, “Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem”, Acoustical Physics, 55:6 (2009), 843–856 | DOI

[11] R. G. Novikov, “Reconstruction of a two-dimensional Schroedinger operator from the scattering amplitude for fixed energy”, Funct. Anal. Its Appl., 20 (1986), 246–248 | DOI | MR | Zbl

[12] V. A. Burov, S. N. Vecherin, S. A. Morozov, O. D. Rumyantseva, “Modeling of the exact solution of the inverse scattering problem by functional methods”, Acoustical Physics, 56:4 (2010), 541–559 | DOI

[13] L. Beilina, M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012 | Zbl

[14] S. I. Kabanikhin, A. D. Satybaev, M. A. Shishlenin, Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems, VSP, Utrecht, 2004 | MR

[15] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical methods for the solution of ill-posed problems, Kluwer Academic Publ., Dordrecht, 1995 | MR | MR | Zbl

[16] A. S. Leonov, Solution of Ill-Posed Inverse Problems. Theory Review, Practical Algorithms and MATLAB Demonstrations, Librokom, M., 2010 (in Russian)

[17] H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996 | MR | Zbl

[18] R. O. Yevstigneyev, M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Obratnaia zadacha vosstanovleniia neodnorodnostei tela dlia rannei diagnostiki zabolevanii s pomoshchyu mikrovolnovoi tomografii”, Izvestiia vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 44:4 (2017), 3–17

[19] A. B. Bakushinsky, A. S. Leonov, “Fast numerical method of solving 3D coefficient inverse problem for wave equation with integral data”, J. of Inverse and Ill-Posed Problems, 26:4 (2018), 477–492 | DOI | MR | Zbl

[20] A. B. Bakushinskii, A. S. Leonov, “Low-Cost Numerical Method for Solving a Coefficient Inverse Problem for the Wave Equation in Three-Dimensional Space”, Comput. Math. and Math. Phys., 58:4 (2018), 548–561 | DOI | MR | Zbl

[21] A. B. Bakushinskii, A. S. Leonov, “Fast solution algorithm for a three-dimensional inverse multifrequency problem of scalar acoustics with data in a cylindrical domain”, Comput. Math. and Math. Phys., 62:2 (2022), 287–301 | DOI | MR | Zbl

[22] B. M. Budak, A. A. Samarskii, A. N. Tikhonov, A Collection of Problems on Mathematical Physics, Pergamon, Oxford, 1964 | MR | MR

[23] V. A. Burov, O. D. Rumyantseva, Obratnyye volnovye zadachi akusticheskoi tomografii, v. 2, LENAND, M., 2020

[24] A. I. Kozlov, M. Yu. Kokurin, “On Lavrent'ev-Type Integral Equations in Coeffi-cient Inverse Problems for Wave Equations”, Comput. Math. and Math. Phys., 61:9 (2021), 1470–1484 | DOI | MR | Zbl

[25] M. V. Klibanov, Li Jingzhi, Zhang Wenlong, “Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem”, SIAM J. Appl. Math., 81:5 (2021), 1954–1978 | DOI | MR | Zbl