Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_5_a0, author = {A. B. Bakushinsky and A. S. Leonov}, title = {Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--26}, publisher = {mathdoc}, volume = {34}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/} }
TY - JOUR AU - A. B. Bakushinsky AU - A. S. Leonov TI - Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing JO - Matematičeskoe modelirovanie PY - 2022 SP - 3 EP - 26 VL - 34 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/ LA - ru ID - MM_2022_34_5_a0 ER -
%0 Journal Article %A A. B. Bakushinsky %A A. S. Leonov %T Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing %J Matematičeskoe modelirovanie %D 2022 %P 3-26 %V 34 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/ %G ru %F MM_2022_34_5_a0
A. B. Bakushinsky; A. S. Leonov. Computing magnifier for refining the position and shape of three-dimensional objects in acoustic sensing. Matematičeskoe modelirovanie, Tome 34 (2022) no. 5, pp. 3-26. http://geodesic.mathdoc.fr/item/MM_2022_34_5_a0/
[1] A. A. Goryunov, A. V. Saskovets, Obratnye zadachi rasseianiia v akustike, MGU, M., 1989 | MR
[2] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Appl. Math. Sci., 93, 2nd ed., Springer, Berlin, 1998 | DOI | MR | Zbl
[3] A. G. Ramm, Multidimensional Inverse Scattering Problems, Pitman Monogr. Surv. Pure Appl. Math., 51, Longman Scientific Technical, Harlow, 1992 | MR | Zbl
[4] A. Bakushinsky, A. Goncharsky, Ill-Posed Problems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl
[5] A. B. Bakushinsky, M. Yu. Kokurin, Iterative methods for approximate solution of inverse problems. Mathematics and Its Applications, Springer, Dordrecht, 2004 | MR
[6] A. V. Goncharskii, S. Y. Romanov, “Two approaches to the solution of coefficient inverse problems for wave equations”, Comput. Math. and Math. Phys., 52:2 (2012), 263–269 | MR
[7] A. V. Goncharskii, S. Y. Romanov, “Two approaches to the solution of coefficient inverse problems for wave equations”, Comput. Math. and Math. Phys., 52:2 (2012), 263–269 | DOI | MR
[8] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), 1–67 | DOI | MR
[9] L. N. Pestov, V. M. Bolgova, A. N. Danilin, “Chislennaia rekonstruktsiia trekhmernoi skorosti zvuka metodom granichnogo upravleniia”, Vestnik Yugorskogo gosuniversiteta, 2011, no. 3, 92–98
[10] V. A. Burov, N. V. Alekseenko, O. D. Rumyantseva, “Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem”, Acoustical Physics, 55:6 (2009), 843–856 | DOI
[11] R. G. Novikov, “Reconstruction of a two-dimensional Schroedinger operator from the scattering amplitude for fixed energy”, Funct. Anal. Its Appl., 20 (1986), 246–248 | DOI | MR | Zbl
[12] V. A. Burov, S. N. Vecherin, S. A. Morozov, O. D. Rumyantseva, “Modeling of the exact solution of the inverse scattering problem by functional methods”, Acoustical Physics, 56:4 (2010), 541–559 | DOI
[13] L. Beilina, M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012 | Zbl
[14] S. I. Kabanikhin, A. D. Satybaev, M. A. Shishlenin, Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems, VSP, Utrecht, 2004 | MR
[15] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, Numerical methods for the solution of ill-posed problems, Kluwer Academic Publ., Dordrecht, 1995 | MR | MR | Zbl
[16] A. S. Leonov, Solution of Ill-Posed Inverse Problems. Theory Review, Practical Algorithms and MATLAB Demonstrations, Librokom, M., 2010 (in Russian)
[17] H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996 | MR | Zbl
[18] R. O. Yevstigneyev, M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Obratnaia zadacha vosstanovleniia neodnorodnostei tela dlia rannei diagnostiki zabolevanii s pomoshchyu mikrovolnovoi tomografii”, Izvestiia vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 44:4 (2017), 3–17
[19] A. B. Bakushinsky, A. S. Leonov, “Fast numerical method of solving 3D coefficient inverse problem for wave equation with integral data”, J. of Inverse and Ill-Posed Problems, 26:4 (2018), 477–492 | DOI | MR | Zbl
[20] A. B. Bakushinskii, A. S. Leonov, “Low-Cost Numerical Method for Solving a Coefficient Inverse Problem for the Wave Equation in Three-Dimensional Space”, Comput. Math. and Math. Phys., 58:4 (2018), 548–561 | DOI | MR | Zbl
[21] A. B. Bakushinskii, A. S. Leonov, “Fast solution algorithm for a three-dimensional inverse multifrequency problem of scalar acoustics with data in a cylindrical domain”, Comput. Math. and Math. Phys., 62:2 (2022), 287–301 | DOI | MR | Zbl
[22] B. M. Budak, A. A. Samarskii, A. N. Tikhonov, A Collection of Problems on Mathematical Physics, Pergamon, Oxford, 1964 | MR | MR
[23] V. A. Burov, O. D. Rumyantseva, Obratnyye volnovye zadachi akusticheskoi tomografii, v. 2, LENAND, M., 2020
[24] A. I. Kozlov, M. Yu. Kokurin, “On Lavrent'ev-Type Integral Equations in Coeffi-cient Inverse Problems for Wave Equations”, Comput. Math. and Math. Phys., 61:9 (2021), 1470–1484 | DOI | MR | Zbl
[25] M. V. Klibanov, Li Jingzhi, Zhang Wenlong, “Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem”, SIAM J. Appl. Math., 81:5 (2021), 1954–1978 | DOI | MR | Zbl