Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_4_a7, author = {D. V. Sadin}, title = {Efficient implementation of the hybrid large-particle method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--127}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a7/} }
D. V. Sadin. Efficient implementation of the hybrid large-particle method. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 113-127. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a7/
[1] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidromekhaniki”, Matematicheskii sbornik, 1959, no. 3, 271–306 | Zbl
[2] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | MR | Zbl
[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl
[4] C. Hirsch, Numerical computation of internal and external flows, v. 2, Computational methods for inviscid and viscous flows, John Wiley Sons, New York, 1990, 691 pp. | Zbl
[5] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl
[6] J. Shi, Y. T. Zhang, C.-W. Shu, “Resolution of high order WENO schemes for complicated flow structures”, J. Comput. Phys., 186:2 (2003), 690–696 | DOI | MR | Zbl
[7] B. Cockburn, C. W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Comput. Phys., 16:3 (2001), 173–261 | MR | Zbl
[8] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of the RKDG method for gas dynamics problems”, Math. Models Comput. Simul., 2014, no. 6, 397–407 | DOI | MR | Zbl
[9] R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, U.S.S.R. Comput. Math. Math. Phys., 2:6 (1963), 1355–1365 | DOI | MR | Zbl
[10] X. Liu, S. Zhang, H. Zhang, C. W. Shu, “A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes”, J. Comp. Phys., 284 (2015), 133–154 | DOI | MR | Zbl
[11] Y. A. Kriksin, V. F. Tishkin, “Hybrid Approach to Solve Single-Dimensional Gas Dynamics Equations”, Math. Models Comput. Simul., 11:2 (2019), 256–265 | DOI | MR | Zbl
[12] B. N. Chetverushkin, “Hyperbolic Quasi-Gasdynamic System”, Math. Models Comput. Simul., 10:5 (2018), 588–600 | DOI | MR | Zbl
[13] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. on Sci. Computing, 25:3 (2003), 995–1017 | DOI | MR | Zbl
[14] H. Tang, T. Liu, “A note on the conservative schemes for the Euler equations”, J. Comp. Phys., 218 (2006), 451–459 | DOI | Zbl
[15] A. V. Danilin, A. V. Solov'ev, “A modification of the CABARET scheme for resolving the sound points in gas flows”, Numerical methods and programming, 20:4 (2019), 481–488
[16] I. Yu. Tagirova, A. V. Rodionov, “Application of Artificial Viscosity for Suppressing the Carbuncle Phenomenon in Godunov-Type Schemes”, Math. Models Comput. Simul., 8:3 (2016), 249–262 | DOI | MR | Zbl
[17] D. V. Sadin, “TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type”, Comput. Math. Math. Phys., 56 (2016), 2068–2078 | DOI | MR | Zbl
[18] D. V. Sadin, “Skhemy s nastraivaemymi dissipativnymi svoistvami dlia chislennogo modelirovaniia techenii gaza i gazovzvesei”, Matematicheskoe modelirovanie, 29:12 (2017), 89–104 | MR
[19] D. V. Sadin, “Primenenie skhemy s nastraivaemymi dissipativnymi svoistvsmi k raschetu techenii gaza s razvitiem neustoichivosti na kontaktnoi granitse”, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 8:1 (2018), 153–157
[20] D. V. Sadin, “Modifikatsiia metoda krupnykh chastits do skhemy vtorogo poriadka tochnosti po prostranstvu i vremeni dlia udarno-volnovykh techenii gazovzvesei”, Vestnik IuUrGU MMP, 12:2 (2019), 112–122 | Zbl
[21] D. V. Sadin. V.A. Davidchuk, “Sravnenie modifitsirovannogo metoda krupnykh chastits s nekotorymi skhemami vysokoi razreshaiushchei sposobnosti. Odnomernye testy”, Vychislitelnye metody i programmirivanie, 20:2 (2019), 138–146
[22] D. V. Sadin, I. O. Golikov, E. N. Shirokova, “Testing of the hybrid large-particle method using two-dimensional Riemann problems”, St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 2021, 55–68 | DOI
[23] D. V. Sadin, “Analiz dissipativnykh svoistv gibridnogo metoda krupnykh chastits dlia strukturno slozhnykh techenii gaza”, Kompiuternye issledovaniia i modelirovanie, 12:4 (2020), 757–772 | MR
[24] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Constructing a Limiter Based on Averaging the Solutions for the Discontinuous Galerkin Method”, Math Models Comput. Simul., 11:1 (2019), 61–73 | DOI | MR
[25] S. A. Karabasov, “On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics”, Math. Models Comput. Simul., 3:1 (2011), 92–112 | DOI | Zbl
[26] Z. He, Y. Zhang, F. Gao, X. Li, B. Tian, “An improved accurate monotonicity-preserving scheme for the Euler equations”, Computers Fluids, 140 (2016), 1–10 | DOI | MR | Zbl
[27] J. A. Greenough, W. J. Rider, “A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov”, J. Comp. Phys., 196 (2004), 259–281 | DOI | MR | Zbl
[28] X. Deng, B. Xie, R. Loubère, Y. Shimizu, F. Xiao, “Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts”, Comp. Fluids, 171 (2018), 1–14 | DOI | MR | Zbl