Efficient implementation of the hybrid large-particle method
Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 113-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the hybrid large-particle method, an efficient algorithm with controlled numerical dissipation of the second order of accuracy in space and time is proposed. The computational properties of the algorithm were tested on one-dimensional Einfeldt, Tang or Liu, LeBlanc, Shu and Osher test problems, as well as two-dimensional Riemann problems. The algorithm demonstrated robustness and high resolution comparable to modern schemes having a formally higher order of approximation.
Keywords: high resolution schemes, hybrid large-particle, regulation of numerical viscosity, test problems.
@article{MM_2022_34_4_a7,
     author = {D. V. Sadin},
     title = {Efficient implementation of the hybrid large-particle method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--127},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a7/}
}
TY  - JOUR
AU  - D. V. Sadin
TI  - Efficient implementation of the hybrid large-particle method
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 113
EP  - 127
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_4_a7/
LA  - ru
ID  - MM_2022_34_4_a7
ER  - 
%0 Journal Article
%A D. V. Sadin
%T Efficient implementation of the hybrid large-particle method
%J Matematičeskoe modelirovanie
%D 2022
%P 113-127
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_4_a7/
%G ru
%F MM_2022_34_4_a7
D. V. Sadin. Efficient implementation of the hybrid large-particle method. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 113-127. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a7/

[1] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidromekhaniki”, Matematicheskii sbornik, 1959, no. 3, 271–306 | Zbl

[2] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | MR | Zbl

[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[4] C. Hirsch, Numerical computation of internal and external flows, v. 2, Computational methods for inviscid and viscous flows, John Wiley Sons, New York, 1990, 691 pp. | Zbl

[5] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl

[6] J. Shi, Y. T. Zhang, C.-W. Shu, “Resolution of high order WENO schemes for complicated flow structures”, J. Comput. Phys., 186:2 (2003), 690–696 | DOI | MR | Zbl

[7] B. Cockburn, C. W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Comput. Phys., 16:3 (2001), 173–261 | MR | Zbl

[8] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of the RKDG method for gas dynamics problems”, Math. Models Comput. Simul., 2014, no. 6, 397–407 | DOI | MR | Zbl

[9] R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, U.S.S.R. Comput. Math. Math. Phys., 2:6 (1963), 1355–1365 | DOI | MR | Zbl

[10] X. Liu, S. Zhang, H. Zhang, C. W. Shu, “A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes”, J. Comp. Phys., 284 (2015), 133–154 | DOI | MR | Zbl

[11] Y. A. Kriksin, V. F. Tishkin, “Hybrid Approach to Solve Single-Dimensional Gas Dynamics Equations”, Math. Models Comput. Simul., 11:2 (2019), 256–265 | DOI | MR | Zbl

[12] B. N. Chetverushkin, “Hyperbolic Quasi-Gasdynamic System”, Math. Models Comput. Simul., 10:5 (2018), 588–600 | DOI | MR | Zbl

[13] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. on Sci. Computing, 25:3 (2003), 995–1017 | DOI | MR | Zbl

[14] H. Tang, T. Liu, “A note on the conservative schemes for the Euler equations”, J. Comp. Phys., 218 (2006), 451–459 | DOI | Zbl

[15] A. V. Danilin, A. V. Solov'ev, “A modification of the CABARET scheme for resolving the sound points in gas flows”, Numerical methods and programming, 20:4 (2019), 481–488

[16] I. Yu. Tagirova, A. V. Rodionov, “Application of Artificial Viscosity for Suppressing the Carbuncle Phenomenon in Godunov-Type Schemes”, Math. Models Comput. Simul., 8:3 (2016), 249–262 | DOI | MR | Zbl

[17] D. V. Sadin, “TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type”, Comput. Math. Math. Phys., 56 (2016), 2068–2078 | DOI | MR | Zbl

[18] D. V. Sadin, “Skhemy s nastraivaemymi dissipativnymi svoistvami dlia chislennogo modelirovaniia techenii gaza i gazovzvesei”, Matematicheskoe modelirovanie, 29:12 (2017), 89–104 | MR

[19] D. V. Sadin, “Primenenie skhemy s nastraivaemymi dissipativnymi svoistvsmi k raschetu techenii gaza s razvitiem neustoichivosti na kontaktnoi granitse”, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 8:1 (2018), 153–157

[20] D. V. Sadin, “Modifikatsiia metoda krupnykh chastits do skhemy vtorogo poriadka tochnosti po prostranstvu i vremeni dlia udarno-volnovykh techenii gazovzvesei”, Vestnik IuUrGU MMP, 12:2 (2019), 112–122 | Zbl

[21] D. V. Sadin. V.A. Davidchuk, “Sravnenie modifitsirovannogo metoda krupnykh chastits s nekotorymi skhemami vysokoi razreshaiushchei sposobnosti. Odnomernye testy”, Vychislitelnye metody i programmirivanie, 20:2 (2019), 138–146

[22] D. V. Sadin, I. O. Golikov, E. N. Shirokova, “Testing of the hybrid large-particle method using two-dimensional Riemann problems”, St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 2021, 55–68 | DOI

[23] D. V. Sadin, “Analiz dissipativnykh svoistv gibridnogo metoda krupnykh chastits dlia strukturno slozhnykh techenii gaza”, Kompiuternye issledovaniia i modelirovanie, 12:4 (2020), 757–772 | MR

[24] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Constructing a Limiter Based on Averaging the Solutions for the Discontinuous Galerkin Method”, Math Models Comput. Simul., 11:1 (2019), 61–73 | DOI | MR

[25] S. A. Karabasov, “On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics”, Math. Models Comput. Simul., 3:1 (2011), 92–112 | DOI | Zbl

[26] Z. He, Y. Zhang, F. Gao, X. Li, B. Tian, “An improved accurate monotonicity-preserving scheme for the Euler equations”, Computers Fluids, 140 (2016), 1–10 | DOI | MR | Zbl

[27] J. A. Greenough, W. J. Rider, “A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov”, J. Comp. Phys., 196 (2004), 259–281 | DOI | MR | Zbl

[28] X. Deng, B. Xie, R. Loubère, Y. Shimizu, F. Xiao, “Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts”, Comp. Fluids, 171 (2018), 1–14 | DOI | MR | Zbl