High-speed channel flow control with porous inserts
Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 100-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to modeling a supersonic gas flow in a channel with porous inserts. In one of the variants, it was possible to achieve the disappearance of the separation zone at the point of reflection of the shock wave. In the other, a decrease in the braking pressure loss by about 4% in comparison with the control calculation, which creates a fundamental possibility of a significant increase in the efficiency of hypersonic ramjet engines.
Keywords: hypersound, porous materials, ramjet engines.
@article{MM_2022_34_4_a6,
     author = {A. V. Severin and A. E. Lutsky and I. S. Menshov},
     title = {High-speed channel flow control with porous inserts},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {100--112},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a6/}
}
TY  - JOUR
AU  - A. V. Severin
AU  - A. E. Lutsky
AU  - I. S. Menshov
TI  - High-speed channel flow control with porous inserts
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 100
EP  - 112
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_4_a6/
LA  - ru
ID  - MM_2022_34_4_a6
ER  - 
%0 Journal Article
%A A. V. Severin
%A A. E. Lutsky
%A I. S. Menshov
%T High-speed channel flow control with porous inserts
%J Matematičeskoe modelirovanie
%D 2022
%P 100-112
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_4_a6/
%G ru
%F MM_2022_34_4_a6
A. V. Severin; A. E. Lutsky; I. S. Menshov. High-speed channel flow control with porous inserts. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 100-112. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a6/

[1] T. V. Poplavskaya, S. V. Kirilovskiy, S. G. Mironov, “Supersonic flow around a cylinder with front gas-permeable insert which modeled by skeleton of porous material”, AIP Conf. Proc., 1770 (2016), 030067 | DOI

[2] E. Schuelein, “Shock-wave control by permeable wake generators”, 5th Flow Control Conference, Fluid Dynamics and Co-located Conf. (Chicago, Illinois, 2010, 28 June–1 July) | MR

[3] V. M. Fomin, S. G. Mironov, K. M. Serdyuk, “Reducing the wave drag of bodies in supersonic flows using porous materials”, Technical Physics Letters, 35:2 (2009), 117–119 | DOI

[4] S. G. Mironov, A. A. Maslov, I. S. Tsyryulnikov, “Controlling aerodynamic forces with the aid of gas-permeable porous materials”, Technical Physics Letters, 40:10 (2014), 868–870 | DOI

[5] V. M. Fomin, V. I. Zapriagaev, A. V. Lokotko, V. F. Volkov, A. E. Lutski, I. S. Menshov, Iu. M. Maksimov, A. I. Kirdiashkin, “Aerodynamic characteristics of a body of revolution with gas-permeable surface areas”, J. of Applied Mech. Technical Phys., 51:1 (2010), 65–73 | DOI

[6] V. I. Kornilov, A. V. Boiko, “Experimental Modeling of Air Blowing into a Turbulent Boundary Layer Using an External Pressure Flow”, Technical Physics, 61:10 (2016), 1480–1488 | DOI

[7] V. I. Lysenko, B. V. Smorodskii, Iu. G. Ermolaev, S. A. Gaponov, A. D. Kosinov, N. V. Semenov, A. A. Iatskikh, “Vliianie inzhektsii tiazhelogo gaza v pristenochnyi sloi sverkhzvukovogo pogranichnogo sloia na ego perekhod”, Sibirskii fizich. zhurnal, 12:1 (2017), 50–56 | MR

[8] K. B. Tsyberkin, “On the structure of the steady-state flow velocity field near the interface between a homogeneous liquid and a Brinkman porous medium”, Technical Physics, 61:8 (2016), 1181–1186 | DOI

[9] A. N. Shipliuk, E. B. Burov, A. A. Maslov, V. M. Fomin, “Vliianie poristykh pokrytii na ustoichivost giperzvukovykh pogranichnykh sloev”, Prikladnaia Mekhanika i Tekhnicheskaia Fizika (PMTF), 45:2 (2004), 169–176

[10] B. Ruck, K. Klausmann, “Drag reduction of circular cylinders by porous coating on the leeward side”, Journal of Fluid Mechanics, 813:25 (2017), 382–411

[11] J. R. Edwards, J. A. Fulton, “Development of a RANS and LES/RANS Flow Solver for HighSpeed Engine Flowpath Simulations”, 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conf. (2015, Glasgow, Scotland), AIAA 2015-3570

[12] B. P. Willis, D. O. Davis, W. R. Hingst, Flowfield Measurements in a Normal-Hole-Bled Oblique Shock-Wave and Turbulent Boundary-Layer Interaction, AIAA 1995-2885, July 1995

[13] C. Mimeau, I. Mortazavi, G. H. Cottet, “Passive control of the flow around a hemisphere using porous media”, European J. of Mechanics B/Fluids, 65 (2017), 213–226 | DOI | MR | Zbl

[14] A. S. Epikhin, V. T. Kalugin, “Metody snizheniia i raschet nestatsionarnykh aerodinamicheskikh nagruzok pri kilevom baftinge manevrennogo samoleta”, Matematicheskoe modelirovanie, 29:10 (2017), 35–44 | MR

[15] V. T. Kalugin, A. S. Epikhin, P. A. Chernukha, “Issledovanie vliianiia perfotatsii dlia snizheniia pulsatsionnykh nagruzok, deistvuiushchikh na aerodinamicheskie upravliaiushchie poverkhnosti”, Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2016, no. 223 (1), 51–56

[16] M. R. Baer, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, Int. J. Multiphase Flow, 12 (1986), 861–889 | DOI | MR | Zbl

[17] S. Ergun, “Fluid flow through packed columns”, Chem. Eng. Prog., 1952, 48

[18] D. Rochette, S. Clain, T. Buffard, “Numerical scheme to complete a compressible gas flow in variable porosity media”, Int. J. of Comp. Fluid Dynamics, 19:4 (2005), 299–309 | DOI | MR | Zbl