Relaxation of the volume charge created by the electron flow in the air
Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 83-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of relaxation of the volume electric charge formed by high-energy electrons in air is considered. The charge carriers are negative ions formed when thermalized electrons attach to oxygen molecules. A mathematical model of ion drift in an electric field is built, based on the charge continuity law and Maxwell's equations. The algorithm for the numerical solution of the model equations is based on the particle method. A numerical estimate of the relaxation time of the volume charge is carried out.
Keywords: electron, attachment, drift, electric field.
Mots-clés : ion
@article{MM_2022_34_4_a5,
     author = {F. N. Voronin and M. B. Markov and S. V. Parot'kin},
     title = {Relaxation of the volume charge created by the electron flow in the air},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--99},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a5/}
}
TY  - JOUR
AU  - F. N. Voronin
AU  - M. B. Markov
AU  - S. V. Parot'kin
TI  - Relaxation of the volume charge created by the electron flow in the air
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 83
EP  - 99
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_4_a5/
LA  - ru
ID  - MM_2022_34_4_a5
ER  - 
%0 Journal Article
%A F. N. Voronin
%A M. B. Markov
%A S. V. Parot'kin
%T Relaxation of the volume charge created by the electron flow in the air
%J Matematičeskoe modelirovanie
%D 2022
%P 83-99
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_4_a5/
%G ru
%F MM_2022_34_4_a5
F. N. Voronin; M. B. Markov; S. V. Parot'kin. Relaxation of the volume charge created by the electron flow in the air. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 83-99. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a5/

[1] M. G. Golkovskii, I. M. Poletika, R. A. Salimov, “Elektronno-luchevaia naplavka pokrytii na titanovye splavy”, Fizika i khimiia obrabotki materialov, 2009, no. 1, 56–64

[2] S. Iu. Kornilov, N. G. Rempe, “A system for Extracting an Electron beam into the atmosphere Based on a Plasma Emitter Gun”, Bulletin of RAN. Physics

[3] V. P. Kovalev, Vtorichnye izlucheniia uskoritelei elektronov, Atomizdat, M., 1979, 200 pp.

[4] A. V. Berezin, A. S. Vortonsov, M. E. Zhukovskiy, M. B. Markov, S. V. Parot'kin, “Partical method for electrons in a scattering medium”, Comput. Math. Math. Phys., 55:9 (2015), 1534–1546 | DOI | MR | Zbl

[5] F. N. Voronin, M. B. Markov, S. V. Parot'kin, “Relaksatsiia obieemnogo zariada, sozdavaemogo potokom elektronov v vozdushnoi srede”, Keldysh Institute preprints, 2020, 102, 20 pp. | DOI

[6] N. F. Mott, S. W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965, 858 pp.

[7] S. W. Massey, E. H.S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford, 1969, 684 pp.

[8] M. Y.-K. Kim, M. E. Rudd, “Theory for Ionization of Molecules by Electrons”, Phys. Rev., A, 50 (1994), 3954–3967 | DOI

[9] Y.-K. Kim, W. Hwang, N. M. Weinberger, “Electron-impact ionization cross sections of atmospheric molecules”, J. Chem. Phys., 106:3 (1997), 1026–1033 | DOI | MR

[10] M. B. Markov, “Priblizhenie odnorodnogo rasseianiia elektrona na traektoriiakh”, Matem. Modelirovanie, 21:10 (2009), 85–93 | MR | Zbl

[11] B. M. Smirnov, Fizika slaboionizovannogo gaza: v zadachakh s resheniiami, Nauka, M., 1985

[12] E. W. McDaniel, Collision Phenomena in Ionized Gases, 1st Ed., John Wiley, 1964

[13] B. V. Zamyshliaev, E. P. Maslin, V. M. Loborev, B. A. Shilobreev, Fizika iadernogo vzryva, v. 1, Nauka. Fizmatlit, M., 1997

[14] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, v. 2, 4th ed., Butterworth-Heinemann, 1975, 402 pp. | MR

[15] D. Rapp, D. D. Briglia, J. Chem. Phys., 43:5 (1965), 1480 pp.

[16] N. L. Aleksandrov, “Trekhchastichnoe prilipanie elektrona k molecule”, UFN, 154:2 (1988), 177 | DOI

[17] M. A. Messier, R. M. Hamilton, DNA 3923T, 1975 | Zbl

[18] R. Grunberg, Zs. Naturforsch, 24a (1969), 1039 | DOI

[19] J. A. Marks, V. W. Pine, AFWL-TR-73-286, 1973

[20] E. G. Sheikin, “Calculations of the parameters of the air plasma produced by an electron beam in the channel of an MHD generator with a nonequilibrium conductivity”, Technical Physics, 52:5 (2007), 537–545 | DOI

[21] V. P. Grigor'ev, O. V. Tomashova, “Modelirovanie protsessov ionizatsii v atmosfere, initsiiruemykh radioaktivnymi vybrosami”, Izvestiia Tomskogo politekhnicheskogo universiteta, 306:5 (2003), 16–18

[22] E. M. Bazelian, Iu. P. Raizer, Iskrovoi razriad, Izd-vo MFTI, M., 1997

[23] Iu. P. Raizer, Fizika gazovogo razriada, Nauka, M., 1992

[24] V. E. Golant, A. P. Zhilinskii, I. E. Sakharov, Osnovy fiziki plazmy, Atomizdat, M., 1977

[25] F. N. Voronin, K. K. Inozemtseva, M. B. Markov, “The electromagnetic and termomechanical effect of electron beam on the solid barrier”, Math. Models Comput. Simul., 10:4 (2018), 407–417 | DOI | MR

[26] G. E. Shilov, Generalized Functions and Partial Differential Equations, Gordon and Breech Science Publishers Inc., NY, 1968 | MR | Zbl

[27] I. B. Bakholdin, A. V. Berezin, A. A. Kryukov, M. B. Markov, B. D. Plyushchenkov, D. N. Sadovnichii, “Electromagnetic waves in media with permittivity dispersion”, Math. Models Comput. Simul., 9:2 (2017), 190–200 | DOI | MR | Zbl

[28] A. N. Andrianov, A. V. Berezin, A. S. Vorontsov, K. N. Efimkin, M. B. Markov, “Modelirovanie electromagnitnykh polei radiatsionnogo proiskhozhdeniia na mnogoprotsessornykh vychislitelnykh sistemakh”, Keldysh Institute preprints, 2006, 074, 20 pp.

[29] A. I. Aksionov, S. Iu. Kornilov, M. P. Motorin, N. G. Rempe, “Ustroistvo vyvoda electronnogo puchka v atmosferu na osnove plazmennogo emittera”, Pribory i tekhnika eksperimenta, 2017, no. 2, 84–88