Calculation of transport properties of an aqueous solution at the pore level
Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A direct numerical simulation of a multicomponent aqueous solution transport, including salt ions and surfactants, was performed at the pore level. The mathematical model takes into account the formation of a double electric layer (DEL) and the adsorption of surfactants at the liquid-solid interfaces. Flows in real numerical models of porous media are considered. Based on the analysis of the results of calculations at the pore level (microscale), a theory is given and an integral computational and theoretical model is constructed to describe transport and thermodynamic properties at large scales (macro-scale), that is, the problem of thermodynamic and transport upscaling is solved.
Mots-clés : multicomponent aqueous solution, micro-scale, macro-scale, surfactant.
Keywords: upscaling problem, double electric layer
@article{MM_2022_34_4_a4,
     author = {Alexander Yu. Demianov and Oleg Yu. Dinariev},
     title = {Calculation of transport properties of an aqueous solution at the pore level},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a4/}
}
TY  - JOUR
AU  - Alexander Yu. Demianov
AU  - Oleg Yu. Dinariev
TI  - Calculation of transport properties of an aqueous solution at the pore level
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 70
EP  - 82
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_4_a4/
LA  - ru
ID  - MM_2022_34_4_a4
ER  - 
%0 Journal Article
%A Alexander Yu. Demianov
%A Oleg Yu. Dinariev
%T Calculation of transport properties of an aqueous solution at the pore level
%J Matematičeskoe modelirovanie
%D 2022
%P 70-82
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_4_a4/
%G ru
%F MM_2022_34_4_a4
Alexander Yu. Demianov; Oleg Yu. Dinariev. Calculation of transport properties of an aqueous solution at the pore level. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 70-82. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a4/

[1] S. S. Dukhin, B. V. Deriagin, Elektroforez, Nauka, M., 1976, 332 pp.

[2] D. A. Fridrikhsberg, Kurs kolloidnoi khimii, Khimiia, L., 1984, 368 pp.

[3] R. Haase, Thermodynamik der irreversiblenprozesse, Darmstadt, 1963, 552 pp.

[4] K. J. Laidler, J. M. Meiser, Physical Chemistry: A Solution Manual, Benjamin-Cummings Publishing Company, 1982, 936 pp.

[5] H. B.G. Casimir, “On the attraction between two perfectly conducting plates”, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen journal, 51 (1948), 793–795 | Zbl

[6] O. Yu. Dinariev, “Multicomponent Mixture Flow in an Axisymmetric Capillary in the Presence of a Mobile Surface Phase”, Fluid Dynamics, 37:5 (2002), 753–761 | DOI | MR | Zbl

[7] O. Yu. Dinariev, “Description of a flow of a gas-condensate mixture in an axisymmetric capillary tube by the density-functional method”, J. of Applied Mechanics and Technical Physics, 44:1 (2003), 84–89 | DOI | MR | Zbl

[8] O. Dinariev, N. Evseev, D. Klemin, Density Functional Hydrodynamics in Multiscale Pore Systems: Chemical Potential Drive, SCA2019-A009

[9] O. Yu. Dinariev, “A hydrodynamic description of a multicomponent multiphase mixture in narrow pores and thin layers”, J. Appl. Math. Mech., 59:5 (1995), 745–752 | DOI | MR | Zbl

[10] O. Yu. Dinariev, “Thermal effects in the description of a multicomponent mixture using the density functional method”, J. Appl. Math. Mech., 62:3 (1998), 397–405 | DOI | MR

[11] A. Demianov, O. Dinariev, N. Evseev, “Density functional modelling in multiphase compositional hydrodynamics”, Can. J. Chem. Eng., 89:2 (2011), 206–226 | DOI

[12] A. Yu. Demianov, O. Yu. Dinariev, N. V. Evseev, Introduction to the density functional method in hydrodynamics, Fizmatlit, M., 2014, 328 pp.

[13] A. Yu. Dem'anov, O. Yu. Dinariev, E. L. Sharaborin, “Electroosmotic Flow in Capillary Tubes”, Russian Physics Journal, 63 (2020), 113–118 | DOI | MR

[14] L. Onsager, The Collected Works of Lars Onsager: with commentary, World Scientific, Singapore, 1996, 1088 pp. | MR

[15] O. Stern, “Zur theorie der elektrolytischen doppelschicht”, Berichte der Bunsengesellschaft für physikalische Chemie, 30 (1924), 508–516

[16] D. L. Chapman, “A contribution to the theory of electrocapillarity”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25:6 (1913), 475–481 | DOI | Zbl

[17] N. N. Ianenko, Metod drobnykh shagov resheniia mnogomernykh zadach matematicheskoi fiziki, Nauka, Sibirskoe otd., Novosibirsk, 1967, 197 pp. | MR

[18] Y. J. Kang, C. Yang, X. Y. Huang, “Analysis of electroosmotic flow in a channel packed with microspheres”, Microfluidics and Nanofluidics, 1 (2005), 168–176 | DOI

[19] C. C. Chang, R.-J. Yang, “Electrokinetic mixing in microfluidic systems”, Microfluidics and Nanofluidics, 3 (2007), 501–525 | DOI

[20] C. H. Wu, J. K. Chen, R. J. Yang, “Electrokinetically driven flow control using bare electrodes”, Microfluidics and Nanofluidics, 3 (2007), 485–494 | DOI

[21] S. Di Fraia, N. Massarotti, P. Nithiarasu, “Effectiveness of flow obstructions in enhancing electro-osmotic flow”, Microfluidics and Nanofluidics, 21:46 (2017)

[22] S. Sarkar, S. Ganguly, S. Chakraborty, “Influence of combined electromagnetohydrodynamics on microchannel flow with electrokinetic effect and interfacial slip”, Microfluidics and Nanofluidics, 21:56 (2017)