Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2022_34_4_a2, author = {K. E. Plokhotnikov}, title = {About one numerical method of finding positions of hydrogen and oxygen nuclei in water cluster}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--58}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a2/} }
TY - JOUR AU - K. E. Plokhotnikov TI - About one numerical method of finding positions of hydrogen and oxygen nuclei in water cluster JO - Matematičeskoe modelirovanie PY - 2022 SP - 43 EP - 58 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2022_34_4_a2/ LA - ru ID - MM_2022_34_4_a2 ER -
K. E. Plokhotnikov. About one numerical method of finding positions of hydrogen and oxygen nuclei in water cluster. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 43-58. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a2/
[1] K. E. Plokhotnikov, “About One Method of Numerical Solution of Schrodinger's Equation”, Mathematical Models and Computer Simulations, 12:2 (2020), 221–231 | DOI | MR | Zbl
[2] K. E. Plokhotnikov, “Solving the Schrodinger Equation on the Basis of Finite-Difference and Monte-Carlo Approaches”, Journal of Applied Mathematics and Physics, 9:2 (2021), 328–369 | DOI
[3] Iu. I. Ozhigov, Konstruktivnaia fizika, NITS “Reguliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2010, 424 pp.
[4] N. F. Stepanov, Kvantovaia mekhanika i kvantovaia khimiia, Mir, M., 2001, 519 pp.
[5] J. Kim, A. T. Baczewski, T. D. Beaudet et al, “QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids”, J. of Physics Condensed Matter, 30:19 (2018) | DOI
[6] D.R. Hartree, The calculation of Atomic Structures, Wiley Sons, New York, 1957 | MR | Zbl
[7] W. Kohn, “Nobel Lecture: Electronic structure of matter wave functions and density functionals”, Reviews of Modern Physics, 71:5, October (1999), 1253–1266 | DOI | MR
[8] V. V. Vedenyapin, T. S. Kazakova, V. Ya. Kiselevskaya-Babanina, B. N. Chetverushkin, “Schrödinger Equation as a Self-Consistent Field”, Doklady Mathematics, 97:3 (2018), 240–242 | DOI | MR | Zbl
[9] K. E. Plokhotnikov, “Numerical Method for Reconstructing the Average Positions of Quantum Particles in a Molecular System”, Mathematical Models and Computer Simulations, 13:3 (2021), 372–381 | DOI | DOI | MR | Zbl
[10] M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, G. M. Bubnov, “Water dimer and the atmospheric continuum”, Physics-Uspekhi, 57:11 (2014), 1083–1098 | DOI | DOI
[11] A. Mukhopadhyay, S. S. Xantheas, R. J. Saykally, “The water dimer II: Theoretical investigations”, Chemical Physics Letters, 700 (2018), 163–175 | DOI
[12] S. S. Xantheas, Ch. J. Burnham, R. J. Harrison, “Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles”, J. of Chem. Phys., 116:4 (2002), 1493–1499 | DOI
[13] Jun Cui, Hanbin Liu, Kenneth D. Jordan, “Theoretical Characterization of the (H$_2$O)$_{21}$ Cluster: Application of an $n$-body Decomposition Procedure”, J. Phys. Chem. B, 110:38 (2006), 18872–18878 | DOI
[14] I. Ignatov, O. Mosin, “Structural Mathematical Models Describing Water Clusters”, Mathematical Theory and Modeling, 3:11 (2013), 72–87
[15] Yitian Gao, Hongwei Fang, Ke Ni, “A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow”, Scientific Reports, 11:9542 (2021)
[16] M. W. Feyereisen, D. Feller, D. A. Dixon, “Hydrogen Bond Energy of the Water Dimer”, J. Phys. Chem., 100:8 (1996), 2993–2997 | DOI
[17] A. Michaelides, K. Morgenstern, “Ice nanoclusters at hydrophobic metal surfaces”, Nature Materials, 6 (2007), 597–601 | DOI