Scenario modeling of the king crab stock collapse under expert control of annual catch
Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 23-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a number of actual situations, when the impact control strategy is determined on the basis of decisions of experts and stakeholders, it is advisable to carry out modeling in the form of a set of scenario computational experiments. The scenario approach allows us to compare the development of a situation given by formal conditions, simulating the logic of expert decisions and assessing the consequences for biological resources. For the structure of the scenario model, it is necessary to include conditions for changing the nature of the process, changing the behavior of the system, and defining a new control action. It is proposed to use a special form of representation of model time with continuous intervals and a hierarchy of events, which corresponds to the considered biological problem. A model with the property of multistability is formed on the basis of equations for the formation of adult generations. These equations change depending on the current stages of development and conditions of reproduction of crabs. The dynamics of the situation that led to the collapse of the Kamchatka crab stocks during irrational fishing is considered. The scenario develops from stages with sharp aperiodic fluctuations in the number, which are reflected in a transient chaotic regime. The discrete component of the trajectory of the model with hybrid time and formalized logic of expert fishery management describes the moment of the population collapse as the loss of the invariance property by the attractor, which is in contact with the boundary of its basin of attraction.
Keywords: scenario modeling, nonlinear dynamics of ecosystems, collapse.
@article{MM_2022_34_4_a1,
     author = {A. Y. Perevaryukha},
     title = {Scenario modeling of the king crab stock collapse under expert control of annual catch},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--42},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2022_34_4_a1/}
}
TY  - JOUR
AU  - A. Y. Perevaryukha
TI  - Scenario modeling of the king crab stock collapse under expert control of annual catch
JO  - Matematičeskoe modelirovanie
PY  - 2022
SP  - 23
EP  - 42
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2022_34_4_a1/
LA  - ru
ID  - MM_2022_34_4_a1
ER  - 
%0 Journal Article
%A A. Y. Perevaryukha
%T Scenario modeling of the king crab stock collapse under expert control of annual catch
%J Matematičeskoe modelirovanie
%D 2022
%P 23-42
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2022_34_4_a1/
%G ru
%F MM_2022_34_4_a1
A. Y. Perevaryukha. Scenario modeling of the king crab stock collapse under expert control of annual catch. Matematičeskoe modelirovanie, Tome 34 (2022) no. 4, pp. 23-42. http://geodesic.mathdoc.fr/item/MM_2022_34_4_a1/

[1] A. V. Lasunskii, “Stability of stationary states in some population models with variable coefficients”, Math. Models and Computer Simulations, 1 (2009), 335–342 | DOI | MR

[2] V. G. Il'ichev, “Universal stock constants in models of competition”, Mathematical Models and Computer Simulations, 8 (2016), 73–83 | DOI | MR | Zbl

[3] N. I. Reus, S. V. Petrova, “Krizis mirovogo i natsional'nogo rybolovstva i potentsial yego ustoychivogo razvitiya”, Arktika: obshchestvo i ekonomika, 2012, no. 8, 115–122

[4] T. I. Bulgakova, “Stsenarnoye modelirovaniye, napravlennoye na testirovaniye pravila regulirovaniya promysla Atlantichesko-Ckandinavskoy vesenne-nerestuyushchey seldi”, Rybnoye khozyaystvo, 2009, no. 5, 70–74

[5] A. I. Abakumov, L. N. Bocharov, T. M. Reshetnyak, “Optimalnoye raspredeleniye kvot dlya mnogovidovykh promyslov na primere Karaginskogo promyslovogo rayona”, Voprosy rybolovstva, 10:2 (38) (2009), 352–363

[6] C. Costello, “The Economic Value of Rebuilding Fisheries”, OECD Food, Agriculture and Fisheries Papers, 2012, no. 55, 1–69

[7] M. L. Pinsky, O. P. Jensen, D. Ricard, “Unexpected patterns of fisheries collapse in the world's oceans”, Proc. of the National Academy of Sciences, 108 (2011), 8317–8322 | DOI

[8] T. Yu. Borisova, I. V. Solovyeva, “Problemnyye aspekty modelirovaniya populyatsionnykh protsessov i kriterii ikh soglasovaniya”, Matematich. mashiny i sistemy, 2017, no. 1, 71–81

[9] A. Yu. Perevaryukha, “Phenomenological Computational Model for the Development of a Population Outbreak of Insects with Its Bifurcational Completion”, Mathematical Models and Computer Simulations, 10 (2018), 501–511 | DOI | MR | Zbl

[10] L. R. Clark, “The population dynamics of Cardiaspina albitextura (Psyllidae)”, Australian Journal of Zoology, 12:3 (1964), 362–380 | DOI

[11] V. V. Mikhaylov, “Modelirovaniye dinamiki biogennoy nagruzki pri otsenke effektivnosti vospolneniya bioresursov”, Inf. upravlyayushchiye sistemy, 2017, no. 4, 103–110

[12] A. V. Sokolov, “Modelirovaniye evolyutsii populyatsiy s vozrastnoy strukturoy: svyaz' rozhdayemosti so skorost'yu izmeneniya sredy”, Trudy Instituta sistemnogo analiza RAN, 64:3 (2014), 53–59

[13] E. Ya. Frisman, O. L. Revutskaya, G. P. Neverova, “Modelirovaniye dinamiki limitirovannoy populyatsii s vozrastnoy i polovoy strukturoy”, Matematicheskoye modelirovaniye, 22:11 (2010), 65–78 | MR

[14] V. V. Mikhailov, A. Yu. Perevaryukha, Yu. S. Reshetnikov, “Model of fish population dynamics with the calculation of growth rates of individuals and scenarios of the hydrological situation”, Information and control systems, 2018, no. 4, 31–38

[15] M. V. Churova, O. V. Meshcheryakova, N. N. Nemova, M. I. Shatunovskii, “The correlation between fish growth and several biochemical characteristics with reference to the steelhead Parasalmo mykiss Walb”, Biology Bulletin, 37:3 (2010), 236–245 | DOI

[16] E. A. Kriksunov, “Theory of recruitment and interpretation of fish population dynamics”, Journal of Ichthyology, 35:7 (1995), 10–37

[17] L.I. Karamushko, “Interdependence of growth and energy metabolism, growth efficiency in fish of the northern seas”, Successes of modern biology, 128:2 (2008), 180–191

[18] A.N. Sharkovskii, “On attracting and attracting sets”, Doklady Academy of Sciences of the USSR, 160 (1965), 1036–1038 | Zbl

[19] V. M. Borisov, A. A. Elizarov, V. D. Nesterov, “The role of spawning stock in formation of recruitment of northeast Atlantic cod Gadus morhua”, Journal of Ichthyology, 46:1 (2006), 74–82 | DOI | MR

[20] P. V. Veshchev, G. I. Guteneva, “Efficiency of natural reproduction of sturgeons in the lower Volga under current conditions”, Russian Journal of Ecology, 43:2 (2012), 142–147 | DOI

[21] Y. V. Tyutyunov, L. I. Titova, S. V. Berdnikov, “A mechanistic model for interference and Allee effect in the predator population”, Biophysics, 58:2 (2013), 258–264 | DOI

[22] J. Roughgarden, F. Smith, “Why fisheries collapse and what to do about it”, Proc. Natl. Acad. Sci. USA, 93 (1996), 5078–5083 | DOI

[23] A. Yu. Perevaryukha, “Comparative modeling of two especial scenarios of bioresources collapses: Canadian Atlantic cod and Caspian Sea sturgeon”, Journal of Automation and Information Sciences, 49:6 (2017), 22–34 | DOI | MR

[24] B. Dew, R. McConnaughey, Did trawling on the brood stock contribute to the collapse of Alaska's king crab?, Ecological Applications, 15 (2005), 919–941 | DOI

[25] D. Singer, “Stable orbits and bifurcations of the maps on the interval”, SIAM Journal of Applied Math., 35 (1978), 260–268 | DOI | MR

[26] S. V. Gonchenko, A. S. Gonchenko, M. I. Malkin, “O klassifikatsii klassicheskikh i poluoriyentiruyemykh podkov v terminakh granichnykh tochek”, Nelineynaya dinamika, 6:3 (2010), 549–566

[27] J. Guckenheimer, “Sensitive dependence on initial conditions for one dimensional maps”, Comm. Math. Physics, 70 (1979), 133–160 | DOI | MR | Zbl

[28] A. V. Nikitina, A. I. Sukhinov, G. A. Ugolnitsky, A. B. Usov, A. E. Chistyakov, M. V. Puchkin, I. S. Semenov, “Optimal control of sustainable development in the biological rehabilitation of the Azov Sea”, Math. Mod. Comp. Simul., 9:1 (2017), 101–107 | DOI | MR | MR

[29] C. Grebogi, E. Ott, J. A. Yorke, “Crises, sudden changes in chaotic attractors, and transient chaos”, Physica D: Nonlinear Phenomena, 7:1–3 (1983), 181–200 | DOI | MR

[30] B. Reisner, A. Kittel, S. Luck, J. Peinke, J. Parisi, “Attractor Merging Crisis in the Double-Scroll Oscillator”, Zeitschrift für Naturforschung, 50:12 (1995), 1105–1107 | DOI

[31] “On validity criteria for the analysis of nonlinear effects in models of exploited populations”, Problems of mechanics and control: Nonlinear dynamic systems, V.A. Dubrovskaya, no. 48, 74–83